
A Machine Learning Architecture for Optimizing Web Search Engines

Justin Boyan, Dayne Freitag, and Thorsten Joachims
fjab,dayne,thorsteng@cs.cmu.edu

School of Computer Science
Carnegie Mellon University

May 10, 1996�

Abstract

Indexing systems for the World Wide Web, such
as Lycos and Alta Vista, play an essential role in
making the Web useful and usable. These systems
are based on Information Retrieval methods for
indexing plain text documents, but also include
heuristics for adjusting their document rankings
based on the special HTML structure of Web doc-
uments. In this paper, we describe a wide range of
such heuristics|including a novel one inspired by
reinforcement learning techniques for propagating
rewards through a graph|which can be used to
a�ect a search engine's rankings. We then demon-
strate a system which learns to combine these
heuristics automatically, based on feedback col-
lected unintrusively from users, resulting in much
improved rankings.

1 Introduction

Lycos (Mauldin & Leavitt 1994), Alta Vista, and sim-
ilar Web search engines have become essential as tools
for locating information on the ever-growing World
Wide Web. Underlying these systems are statistical
methods for indexing plain text documents. How-
ever, the bulk of the Web consists of HyperText
Markup Language (HTML) documents, which exhibit
two kinds of structure not present in general text doc-
uments:

1. They have an internal structure consisting of
typed text segments marked by meta-linguistic tags
(markup). HTML de�nes a set of roles to which text
in a document can be assigned. Some of these roles
relate to formatting, such as those de�ning bold and
italic text. Others have richer semantic import, such
as headlines and anchors, the text segments which
serve as hyperlinks to other documents.

�To appear in: AAAI Workshop on Internet-Based In-
formation Systems, Portland, Oregon, 1996.

2. They also have an external structure. As a node in
a hypertext, a HTML page is related to potentially
huge numbers of other pages, through both the hy-
perlinks it contains and the hyperlinks that point to
it from other pages.

Because HTML pages are more structured than general
text, Web search engines enhance traditional indexing
methods with heuristics that take advantage of this
structure. It is by no means clear how to integrate
such heuristics most e�ectively, however.

Paper Overview

In the following section we describe our prototype
Web-indexing system, called LASER, and outline its
heuristics for exploiting the internal and external struc-
ture of the Web. In the section entitled Automatic

Optimization, we describe how the parameters for
combining these heuristics are automatically tuned
based on system usage. Finally, we present and dis-
cuss our �rst empirical results with the system.

2 LASER

LASER, a Learning Architecture for Search Engine
Retrieval, is a system designed to investigate the ap-
plicability of Machine Learning methods to the index-
ing of Web pages. From a user's perspective, much of
LASER's functionality is identical to that of other pop-
ular Web search engines (see Figure 1). The user enters
unstructured keyword queries, which LASER matches
against its index of pages, returning abstracts of and
links to the 60 pages matching the query most closely.
From this page of search results, the user can proceed
to any of the abstracted pages or enter a new query.
LASER's retrieval function is based on the TFIDF

vector space retrieval model (Salton 1991). In this
model documents and queries are represented as vec-
tors of real numbers, one for each word; documents and
queries with similar contents are transformed into sim-
ilar vectors. LASER uses an inner product similarity

Figure 1: The LASER Interface. Our prototype system indexes approximately 30; 000 hypertext documents avail-
able from the CMU Computer Science Department Web server.

metric to compare documents with a query. Typically,
the value of a word depends both on its frequency in
the document under consideration and its frequency in
the entire collection of documents. If a word occurs
more frequently in a particular document than in the
collection as a whole, then it is considered salient for
that document and is given a high score. In its simplest
form, TFIDF assigns to each word a score proportional
to its frequency in the document (term frequency or
TF) and a decreasing function of the number of docu-
ments it occurs in overall (inverse document frequency
or IDF).

LASER's retrieval function, based on this model, of-
fers a number of parameters which in
uence the rank-
ings it produces. The parameters a�ect how the re-
trieval function responds to words in certain HTML
�elds (like headlines), how hyperlinks are incorporated,
how to adjust for partial-word matches or query-term

adjacency, and more: altogether, there are 18 real-
valued parameters.1 Using a particular parameter set-
ting makes it possible to pick a certain retrieval func-
tion from the family of functions LASER o�ers. In this
way, the retrieval function can be adjusted to the dif-
ferent characteristics of various document collections
and user groups.

2.1 Using HTML Formatting in Retrieval

Most Web pages are written in HTML. HTML is a
markup language which allows the designer of a page
to assign certain semantics to parts of a document and
to control the layout. The designer can specify, for ex-
ample, the title of a document, hierarchies of headlines
and hyperlinks, and character formats such as boldfac-

1A listing of the parameters LASER uses, in the form
of a function for calculating document scores, can be found
in the Appendix.

2

ing.
LASER makes use of the structure HTML imposes

on documents. For example, one parameter governs to
what extent words in the title of a document should re-
ceive stronger indexing weight than words near the end
of a document. LASER has parameters for weighting
words in the following HTML �elds:

� TITLE
� H1, H2, H3 (headlines)

� B (bold), I (italics), BLINK

� A (underlined anchor text)

The parameters for these HTML tags are simply mul-
tiplicative factors for the \term frequency" of words
within their scope.

2.2 Incorporating Hypertext Links

Unlike most other document collections, Web pages are
part of a hypertext graph. For retrieval it might be
useful not only to look at a document in isolation, but
also to take its neighboring documents into account.
The approach we took is motivated by an analogy

to reinforcement learning as studied in arti�cial intel-
ligence (Barto, Bradtke, & Singh 1995). Imagine that
an agent searching for information on the Web can
move from page to page only by following hyperlinks.
Whenever the agent �nds information relevant to its
search goal, it gets a certain amount of reward. Re-
inforcement learning could be used to have the agent
learn how to maximize the reward it receives, i.e. learn
how to navigate to relevant information.
The idea, then, is to have LASER rank highly pages

that would serve as good starting points for a search
by such an agent. Good starting points are pages from
which it is easy to reach other pages with relevant in-
formation. We conjecture that these pages are relevant
to a query even if they do not contain much relevant
information themselves, but just link to a number of
relevant documents.
Hyperlinks are incorporated as follows. First, given

a query q the retrieval status values rsv0(q; d) are cal-
culated for each page d in the collection independently,
based on the HTML-speci�c TFIDF parameters de-
scribed above. In reinforcement-learning terms, these
values represent the \immediate reward" associated
with each page. Then, LASER propagates the rewards
back through the hypertext graph, discounting them at
each step, by value iteration (Bellman 1957):

rsvt+1(q; d) = rsv0(q; d) +

X

d02links(d)

rsvt(q; d
0)

jlinks(d)j�
(1)

 is a discount factor that controls the in
uence of
neighboring pages, and links(d) is the set of pages

referenced by hyperlinks in page d. This dynamic-
programming update formula is applied repeatedly for
each document in a subset of the collection. This sub-
set consists of the documents with a sigi�cant rsv0, and
it also includes the documents that link to at least one
of those. After convergence (in practice, 5 iterations),
pages which are n hyperlinks away from document d

make a contribution proportional to
n times their re-
trieval status value to the retrieval status value of d.

Two parameters to LASER in
uence the behavior
of this mechanism: one is
, and the other, � 2 [0; 1],
controls the normalization of the denominator in For-
mula 1 in a range from jlinks(d)j down to 1. Alto-
gether, our retrieval status function has 18 parame-
ters; the score assigned to document d in the context
of query q is computed by rsv5(q; d) as detailed in the
Appendix.

3 Automatic Optimization

The 18 numerical parameters of LASER's retrieval
function allow for a wide variety of search engine be-
havior, from plain TFIDF to very complex ranking
schemes. Qualitatively, di�erent retrieval functions
produce markedly di�erent rankings (see Table 1). Our
goal is to analyze system usage patterns to (1) quan-
tify these di�erences, and (2) automatically optimize
the parameter settings.

3.1 Measuring Search Engine
Performance

In order to keep the system interface easy to use, we
made a design decision not to require users to give
explicit feedback on which search hits were good and
which were bad. Instead, we simply record which
hits people follow, e.g. \User searched for `vegetar-
ian restaurant' and clicked on Restaurant Reviews and
Eating `Indian' in Pittsburgh." Because the user gets
to see a detailed abstract of each hit (see Figure 1), we
believe that the hits actually clicked by the user are
highly likely to be relevant.

A good retrieval function will obey the probability
ranking principle (van Rijsbergen 1979). This means it
places documents which are most likely to be relevant
to the user's query near the top of the hit list. To eval-
uate a retrieval function f 's performance on a single
query q, we simply take the mean ranking according to
f of all documents the user followed. (Example scores
are shown in Table 1.) We then de�ne the overall per-
formance of retrieval function f to be the average of
its performance over all queries in the database. In

3

standard TFIDF using HTML structure; hand-tuned parameters

1. Vegetarian Chili Recipes 1. Restaurant Reviews

2. Vegetarian Recipes 2. Eating \Indian" in Pittsburgh

3. Eating \Indian" in Pittsburgh 3. A List of Food and Cooking Sites
4. Restaurant Reviews 4. Duane's Home Page & Gay Lists
5. Greek Dishes 5. Eating & Shopping Green in Pittsburgh
6. Focus on Vegetarian 6. Living Indian in Pittsburgh
7. For the Professional Cook 7. For the Professional Cook
SCORE: 3.5 SCORE: 1.5

simple count of query terms using HTML structure; automatically-learned params

1. Collection: Thai Recipes 1. Eating \Indian" in Pittsburgh

2. Food Stores Online 2. Restaurant Reviews

3. A List of Food and Cooking Sites 3. A List of Food and Cooking Sites
4. Cookbook of the Year 4. Vegetarian Chili Recipes
5. Collection: Tofu 5. For the Professional Cook
6. Eating \Indian" in Pittsburgh 6. Eating & Shopping Green in Pittsburgh
... 16. Restaurant Reviews 7. Vegetarian Recipes
SCORE: 11 SCORE: 1.5

Table 1: Rankings produced by four di�erent retrieval functions in response to the query \vegetarian restaurant."
Supposing that the user had clicked on the Eating \Indian" in Pittsburgh and Restaurant Reviews pages, these
retrieval functions would be scored as shown.

symbols:

Perf (f) =
1

jQj

jQjX

i=1

1

jDij

jDijX

j=1

rank(f;Qi;Dij) (2)

where Q1 : : :QjQj are the queries in our database and
Di is the set of documents the user followed after pos-
ing query Qi. The input used by this performance
method is clearly noisier and more biased than that
used in methods based on precision-recall (van Rijsber-
gen 1979), which employ exhaustive relevance feedback
information assigned manually by experts.
In practice, the user's choice of hits to follow is

strongly biased toward documents appearing early in
the hit list|regardless of the quality of retrieval func-
tion used. Users rarely have the patience to scroll
through pages and pages of hits. Thus, when eval-
uating performances of new retrieval functions using
our collected database, we attempt to equalize these
\presentation biases." We do this by evaluating Perf
on a subsample Q0 of our query database, where Q0

is constructed to contain an equal number of queries
from each di�erent presentation bias; or alternatively,
we weight each query Qi so as to give equal total weight
to each presentation bias.

3.2 Optimization Method

Given our parametrization of the space of retrieval
functions and our metric for evaluating a retrieval func-

tion's performance, we can now pose the problem of
�nding the best retrieval function as a problem of func-
tion optimization: �nd the parameter vector ~p mini-
mizing Perf (f~p).

The calculation of Perf is based on averages of dis-
crete rankings, so we expect it to be quite discontinu-
ous and probably riddled with local minima. Thus, we
chose to apply a global optimization algorithm, simu-
lated annealing. In particular, we applied the \modi-
�ed downhill simplex" variant of simulated annealing,
as described in (Press et al. 1992).

Because we calculate Perf from only a �xed sub-
sample of queries, aggressive minimization introduces
the danger of over�tting; that is, our converged pa-
rameter vector ~p may exploit particular idiosyncracies
of the subsample at the expense of generalization over
the whole space. To guard against over�tting, we use
early stopping with a holdout set, as is frequently done
in neural network optimization (Morgan & Bourlard
1990), as follows:

1. We consider the sequence of parameter vectors which
are the \best so far" during the simulated anneal-
ing run. These produce a monotonically decreasing
learning curve (see, for example, Figure 2).

2. We then evaluate the performance of each of these
vectors on a separate holdout set of queries. We
smooth the holdout-set performance curve and pick

4

f used for presentation count TFIDF hand-tuned
count 6.26� 1.14 46.94�9.80 28.87�7.39
TFIDF 54.02�10.63 6.18�1.33 13.76�3.33
hand-tuned 48.52� 6.32 24.61�4.65 6.04�0.92
Overall Performance 36.27� 4.14 25.91�3.64 16.22�2.72

Table 2: Performance comparison for three retrieval functions as of March 12, 1996. Lower numbers indicate better
performance. Rows correspond to the indexing method used by LASER at query time; columns hold values from
subsequent evaluation with other methods. Figures reported are means � two standard errors (95% con�dence
intervals).

its minimum; the parameter setting thus chosen is
the �nal answer from our optimization run.

Each evaluation of Perf (f~p) on a new set of parame-
ters is quite expensive, since it involves one call to the
search engine for each query in Q0. These evaluations
could be sped up if Q0 were subsampled randomly on
each call to Perf ; however, this adds noise to the eval-
uation. We are investigating the use of stochastic opti-
mization techniques, which are designed for optimiza-
tion of just this type of noisy and expensive objective
function (Moore & Schneider 1996).

4 Empirical Results

LASER has been in operation since February 14,
1996. The system currently indexes a docu-
ment database consisting of about 30; 000 pages
served by the CMU Computer Science Depart-
ment web server, www.cs.cmu.edu. The sys-
tem is available for use by the CMU com-
munity from the department's local home page,
http://www.cs.cmu.edu/Web/SCS-HOME.html. (We
are considering plans for larger indexes and wider re-
lease.)

4.1 Validity of Performance Measure

We �rst ran an experiment to determine whether our
performance function could really measure signi�cant
di�erences between search engines, based only on unin-
trusive user feedback. We manually constructed three
retrieval functions:

simple-count scores a document by counting the
number of query terms which appear in it;

standard-TFIDF captures word relevance much
better but does not take advantage of HTML struc-
ture; and

hand-tuned includes manually-chosen values for all
18 parameters of our HTML-speci�c retrieval func-
tion.

From February 14 through March 12, we operated
LASER in a mode where it would randomly select one
of these three retrieval functions to use for each query.
During this time LASER answered a total of 1400 user
queries (not including queries made by its designers).
For about half these queries, the user followed one or
more of the suggested documents.
We evaluated Perf (f) for each engine according to

Equation 2. The results, shown in the bottom row
of Table 2, indicate that our performance metric does
indeed distinguish the three ranking functions: hand-
tuned is signi�cantly better than TFIDF, which in turn
is signi�cantly better than simple-count.
The �rst three rows of Table 2 break down the per-

formance measurement according to which retrieval
function generated the original ranking seen by the
user. The presentation bias is clear: the diagonal en-
tries are by far the smallest. Note that the diagonal
entries are not signi�cantly di�erent from one another
with the quantity of data we had collected at this point.
However, we do see signi�cant di�erences when we

average down the columns to produce our full perfor-
mance measurements in row four. Moreover, ranking
the three methods according to these scores produces
the expected order. We take this as evidence that
our performance measure captures to some extent the
\goodness" of a retrieval function and can serve as a
reasonable objective function for optimization.

4.2 Optimization Results

To date, we have had time to run only one optimiza-
tion experiment, so the results of this section should
be considered preliminary. Our goal was to minimize
Perf (f~p), thereby producing a new and better ranking
function.
For e�ciency in evaluating Perf , we let Q be a �xed

subsample of 150 queries from our full query database,
50 from each presentation bias. To make the search
space more tractable, we optimized over only a 10-
dimensional projection of the full 18-dimensional pa-
rameter space. These 10 parameters still allowed for

5

12

14

16

18

20

0 100 200 300 400 500

P
er

fo
rm

an
ce

Evaluations

simulated annealing
"best-so-far" points

holdout set

Figure 2: Optimization of search engine performance by simulated annealing. Perf (f) is plotted for each of the
500 di�erent parameter settings explored. Evaluations on a separate holdout set are used to prevent over�tting.

tuning of such heuristics as title and heading bonuses,
query-word adjacency bonus, partial-match penalty,
document length penalty, near-top-of-page bonus, and

, our hypertext discount factor.

As described above, we ran simulated annealing to
�nd a new, optimal set of retrieval function parame-
ters. Simulated annealing's own parameters were set as
follows: temperature at evaluation #i = 10:0 � 0:95i=2,
and initial stepsize = 10% of the legal range for each
dimension. This run converged after about 500 eval-
uations of Perf (f~p) (see Figure 2). Using the early-
stopping technique, we chose the parameter setting at
evaluation #312 as our �nal answer.

Compared to our hand-tuned parameter setting, the
learned parameter setting gave more weight to title
words, underlined anchor text, and words near the
beginning of a document. Surprisingly, it set
 (our
graph-propagation discount factor) almost to 0. In-
stalling the new retrieval function into our search en-
gine interface, we found it produced qualitatively good
rankings (e.g., refer back to Table 1).

From March 26 through May 6, LASER generated
its rankings with the new retrieval function half the
time and with our hand-tuned retrieval function half
the time. The cumulative results are shown in Ta-
ble 3. According to our overall performance metric,
the hand-tuned and learned retrieval functions both

signi�cantly outperform count and TFIDF, but do not
di�er signi�cantly from one another.
However, the diagonal entries, which re
ect ac-

tual use of the system, provide some indication that
the learned function is an improvement: with 88%
con�dence, the learned retrieval function's value of
4:87 � 0:56 is better than our hand-tuned function's
value of 5:33� 0:57. If this trend continues, we will be
satis�ed that we have successfully learned a new and
better ranking scheme.

5 Related Work

Many retrieval engines have been developed to index
World Wide Web pages. Descriptions of some can
be found in (Mauldin & Leavitt 1994) and (Pinker-
ton 1994). These retrieval engines make use of the
internal structure of documents, but they do not in-
corporate hyperlinks. Other researchers have focused
on retrieval using hypertext structure without making
use of the internal structure of documents (Savoy 1991;
Croft & Turtle 1993).
Automatic parameter optimization was previously

proposed by (Fuhr et al. 1994) as well as (Bartell,
Cottrell, & Belew 1994). Both approaches di�er from
LASER's in that they use real relevance feedback data.
LASER does not require relevance feedback assign-
ment by the user; it uses more noisy data which can

6

f used for presentation count TFIDF hand-tuned learned
count 6.33� 1.13 48.19�9.90 30.62�7.75 32.60�7.97
TFIDF 55.43�10.32 6.05�1.25 13.31�3.14 8.22�2.12
hand-tuned 50.55� 4.68 21.34�2.98 5.33� 0.57 8.95�1.58
learned 47.36� 4.99 13.14�2.21 7.22�0.95 4.87�0.56
Overall Performance 39.92� 3.11 22.18�2.66 14.12�2.11 13.66�2.10

Table 3: Cumulative performance comparison for four retrieval functions as of May 6, 1996. The data is reported
in the same format as in Table 2.

be collected unintrusively by observing users' actions.

6 Conclusions and Future Work

Initial results from LASER are promising. We have
shown that unintrusive feedback can provide su�cient
information to evaluate and optimize the performance
of a retrieval function. According to our performance
metric, an index which takes advantage of HTML
structure outperforms a more traditional \
at" index.
Furthermore, we have begun to collect results demon-
strating that it is possible to automatically improve a
retrieval function by learning from user actions, with-
out recourse to the intrusive methods of relevance feed-
back.
There are many directions for further research,

which we see as falling into three general areas:

retrieval function parametrization LASER cur-
rently o�ers 18 tunable parameters for combining
heuristics into a retrieval function, but certainly
many other heuristics are possible. For example,
we would like to further re�ne our method for in-
corporating hyperlinks. We are also planning to in-
clude per-document popularity statistics, gathered
from regular LASER usage, into the relevance func-
tion. If a document is always skipped by LASER
users, the system should learn to punish that docu-
ment in the rankings.

evaluation metrics While our performance function
has an appealing simplicity, and agrees with our
qualitative judgments on the three search engines of
Table 2, we cannot defend it on theoretical grounds.
A metric derived directly from the probabilistic
ranking principle (van Rijsbergen 1979), for exam-
ple, would allow us to make stronger claims about
our optimization procedure. Another alternative is
to implement a cost function over rankings, where
the cost increases with the number of irrelevant links
(i.e., those which the user explicitly skipped over)
high in the ranking. It is not clear whether this is
a useful metric, or even how to decide among these
alternatives.

On a related issue, we have documented a pro-
nounced tendency for users to select links that are
high in the rankings, no matter how poor the index,
resulting in \presentation bias." This complicates
the problem of evaluating new retrieval functions of-

ine during optimization, since our query database
will strongly bias the retrieval parameters toward
those used for the original presentation. We have an
ad hoc method for compensating for this e�ect, but
would be interested in more principled approaches.

optimization As mentioned in Section 3.2, we plan to
investigate the use of stochastic optimization tech-
niques, in place of simulated annealing, for optimiz-
ing the parameter settings. There is also an interest-
ing possibility for \lifetime learning." We would like
to see how the system improves over time, iteratively
replacing its index with a new and improved one
learned from user data. We can only speculate about
the trajectory the system might take. There is the
possibility of an interesting kind of feedback between
the system and its users; as the system changes its
indexing behavior, perhaps the users of the system
will change their model of it and use it somehow
di�erently from at �rst. Is there a globally optimal
parameter setting for LASER? It may be that, given
the presentation bias and the possibility of drifting
patterns of use, its parameters would never settle
into a stable state.

Acknowledgments

We would like to thank Tom Mitchell and Andrew
Moore for the computational and cognitive resources
they shared with us for these experiments. Thanks,
too, to Darrell Kindred for counseling us on indexing
the local Web. Finally, thanks to Michael Mauldin,
author of the Scout retrieval engine which we used as
a basis for our own.

7

Appendix A Parametric Form of Retrieval Function

rsvt+1(q;d) = rsv0(q;d) + $gamma
X

d02links(d)

rsvt(q;d
0)

jlinks(d)j$nu

rsv0(d;q) = multihit(q; d) �

jqjX

i=1

jdjX

j=1

[qi = dj] �
qweight(i; qi; dj)

jqj
�
dweight(j; qi; dj)

jdj$doclen exp
� adjacency(qi�1; dj�1)

qweight(i; qi; dj) =
1

i

$query pos exp

� idf(qi) � (1 + isfullmatch(qi; dj) � $fullmatch factor

+ispartmatch(qi; dj) � $partmatch factor)

dweight(j;dj) = idf(dj) � (1 + in h1 headline(dj) � $h1 factor

+in h2 headline(dj) � $h2 factor

+in h3 headline(dj) � $h3 factor

+in title(dj) � $title factor

+in bold(dj) � $bold factor

+in italics(dj) � $italics factor

+in blink(dj) � $blink factor

+in anchor(dj) � $anchor factor

+
$toppage factor

log(j + $toppage add)
)

adjacency(qi�1; dj�1) = [qi�1 6= dj�1] + [qi�1 = dj�1] � $adjacency factor

multihit(q; d) = (number of words in q that occur in d)$multihit exp

References

Bartell, B.; Cottrell, G.; and Belew, R. 1994. Op-
timizing parameters in a ranked retrieval system us-
ing multi-query relevance feedback. In Proceedings of
Symposium on Document Analysis and Information
Retrieval (SDAIR).

Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995.
Learning to act using real-time dynamic program-
ming. Arti�cial Intelligence 72(1):81{138.

Bellman, R. 1957. Dynamic Programming. Princeton
University Press.

Croft, B., and Turtle, H. 1993. Retrieval strategies for
hypertext. Information Processing and Management
29(3):313{324.

Fuhr, N.; Pfeifer, U.; Bremkamp, C.; Pollmann, M.;
and Buckley, C. 1994. Probabilistic learning ap-
proaches for indexing and retrieval with the TREC-2
collection. In The Second Text Retrieval Conference
(TREC-2). National Institute of Standards and Tech-
nology.

Mauldin, M., and Leavitt, J. 1994. Web agent re-
lated research at the Center for Machine Translation.
In Proceedings of the ACM Special Interest Group
on Networked Information Discovery and Retrieval
(SIGNIDR-94).

Moore, A., and Schneider, J. 1996. Memory-based
stochastic optimization. In Touretzky, D. S.; Mozer,
M. C.; and Hasselmo, M. E., eds., Neural Information
Processing Systems 8. MIT Press.

Morgan, N., and Bourlard, H. 1990. Generalization
and parameter estimation in feedforward nets: Some
experiments. In Touretsky, D. S., ed., Neural Infor-
mation Processing Systems 2, 630{637. Morgan Kauf-
mann.

Pinkerton, B. 1994. Finding what people want: Expe-
riences with the WebCrawler. In Second International
WWW Conference.

Press, W.; Teukolsky, S.; Vetterling, W.; and Flan-
nery, B. 1992. Numerical Recipes in C: The Art of
Scienti�c Computing. Cambridge University Press,
second edition.

Salton, G. 1991. Developments in automatic text
retrieval. Science 253:974{979.

Savoy, J. 1991. Spreading activation in hypertext
systems. Technical report, Universit�e de Montr�eal.

van Rijsbergen, C. 1979. Information Retrieval. Lon-
don: Butterworths, second edition.

8

