
Parameter Learning for Loopy Markov Random Fields with
Structural Support Vector Machines

Thomas Finley tomf@cs.cornell.edu
Thorsten Joachims tj@cs.cornell.edu

Cornell University, Department of Computer Science, Upson Hall, Ithaca, NY 14853 USA

Abstract

Discriminative learners for functions with
structured outputs have been successfully ap-
plied to sequence prediction, parsing, se-
quence alignment, and other problems where
exact inference is tractable. However, these
learners face challenges when inference pro-
cedures must use approximations, e.g., for
multi-label classification, clustering, image
segmentation, or loopy graphical models.

In this paper, we explore methods for train-
ing structural SVMs on problems where ex-
act inference is intractable. In particular,
we consider pairwise fully connected Markov
random fields, using multi-label classification
as an example application. We show how
to adapt loopy belief propagation, greedy
search, and linear programming relaxations
as (approximate) separation oracles in the
structural SVM cutting-plane training algo-
rithm. In addition to theoretical characteri-
zations, we empirically evaluate and analyze
the resulting algorithms on six multi-label
classification datasets.

1. Introduction

Discriminative training methods like conditional ran-
dom fields (Lafferty et al., 2001), maximum-margin
Markov networks (Taskar et al., 2003), and struc-
tural SVMs (Tsochantaridis et al., 2004) have substan-
tially improved prediction performance on a variety
of structured prediction problems, including part-of-
speech tagging (Altun et al., 2003), natural language
parsing (Tsochantaridis et al., 2005), sequence align-
ment (Yu et al., 2007), and classification under multi-
variate loss functions (Joachims, 2005). In the context

Appearing in the ICML ’2007 Workshop on Constrained
Optimization and Structured Output Spaces, Corvallis, OR,
2007. Copyright 2007 by the author(s)/owner(s).

of structural SVMs, in all these problems, both the in-
ference problem (i.e., computing a prediction) and the
separation oracle required in the cutting-plane training
algorithm can be solved exactly. This leads to theoret-
ical guarantees of training procedure convergence and
solution quality.

However, in many problems (e.g., clustering (Finley &
Joachims, 2005), multi-label classification, image seg-
mentation, general graphical models) exact inference
and the separation oracle cannot be implemented ef-
ficiently. One may use approximate inference in this
setting. Unfortunately, many of the theoretical guar-
antees of these methods no longer hold in this case,
and relatively little is known about the behavior of
structural SVMs using approximations.

This paper explores training structural SVMs on prob-
lems where exact inference is intractable. A pair-
wise fully connected Markov random field serves as
a representative class of intractable models. This
class includes natural formulations of models for multi-
label classification, image segmentation, and cluster-
ing. We identify two classes of approximation algo-
rithms for the separation oracle in the structural SVM
cutting-plane training algorithm, namely undergener-
ating and overgenerating algorithms, and we adapt
loopy belief propagation (LBP), greedy search, and
linear programming relaxations to this problem. In ad-
dition to theoretical characterizations, the algorithms
are empirically evaluated on multi-label classification
datasets.

We find substantial differences between the different
approximate training and inference algorithms. Most
importantly, LBP is not robust as a separation oracle,
often performing worse than a simple greedy method.
The linear programming relaxation leads to a mod-
ified (approximate) SVM training problem that can
be solved exactly in a relaxed output space, which
appears to train more robust models than other ap-
proaches.

Parameter Learning of Loopy MRFs with Structural SVMs

2. Structured Output Prediction

Several discriminative structural learners were pro-
posed in recent years, including conditional ran-
dom fields (CRFs) (Lafferty et al., 2001), Perceptron
HMMs (Collins, 2002), max-margin Markov networks
(M3Ns) (Taskar et al., 2003), and structural SVMs
(SSVMs) (Tsochantaridis et al., 2004). Notational
differences aside, these methods all learn (kernelized)
linear discriminant functions, but differ in how they
choose parameterizations of the hypothesis. We focus
on structural SVMs in this paper.

2.1. Structural SVMs

Structural SVMs minimize a particular trade-off be-
tween model complexity and empirical risk. Based
on a training set S = ((x1,y1), . . . , (xn,yn)), an
SSVM learns a hypothesis h : X → Y to map in-
puts x ∈ X to outputs y ∈ Y. Hypotheses take
the form h(x) = argmaxy∈Y f(x,y) with discrimi-
nant function f : X × Y → R, where f(x,y) =
wT Ψ(x,y). Ψ is a combined feature vector func-
tion relating inputs and outputs, and w contains the
parameters that are adjusted during training. We
also define a loss function ∆ : Y × Y → R indicat-
ing how bad output h(xi) is w.r.t. true output yi.
To find w balancing model complexity and empiri-
cal risk R∆

S (h) = 1
n

∑n
i=1 ∆(yi, h(xi)), SSVMs solve

the following quadratic program (QP) for the case of
the margin-rescaling hinge loss (Tsochantaridis et al.,
2004):
Optimization Problem 1. (Struct. SVM QP)

min
w,ξ≥0

1
2
‖w‖2 +

C

n

n∑
i=1

ξi (1)

∀i,∀y∈Y\yi: wTΨ(xi,yi) ≥ wTΨ(xi,y)+∆(yi,y)−ξi (2)

Introducing a constraint for every wrong output is of-
ten impractical, so Algorithm 1 solves OP 1 by a cut-
ting plane algorithm. It iteratively constructs a suffi-
cient subset

⋃
i Si of constraints and only solves the

QP over this subset (line 10). The algorithm em-
ploys a separation oracle to find the next constraint
to include (line 6). It finds the currently most vio-
lated constraint (or, a constraint that is violated by
at least the desired precision ε). If such a separation
oracle exists and can be computed in polynomial time,
OP 1 and Algorithm 1 have three theoretical guaran-
tees (Tsochantaridis et al., 2004; Tsochantaridis et al.,
2005):

Polynomial Time Termination: Algorithm 1 ter-
minates in a polynomial number of iterations, and
thus overall polynomial time.

Algorithm 1 Cutting plane algorithm to solve OP 1.
1: Input: (x1,y1), . . . , (xn,yn), C, ε
2: Si ← ∅ for all i = 1, . . . , n
3: repeat
4: for i = 1, . . . , n do
5: H(y) ≡ ∆(yi,y)+wT Ψ(xi,y)−wT Ψ(xi,yi)
6: compute ŷ = argmaxy∈Y H(y)
7: compute ξi = max{0,maxy∈Si H(y)}
8: if H(ŷ) > ξi + ε then
9: Si ← Si ∪ {ŷ}

10: w← optimize primal over
⋃

i Si

11: end if
12: end for
13: until no Si has changed during iteration

Correctness: Algorithm 1 returns a solution of OP 1
accurate to the desired precision ε, since Algo-
rithm 1 terminates only when all constraints in
OP 1 are respected within ε (lines 8 and 13).

Empirical Risk Bound: Since each ξi upper
bounds training loss ∆(yi, h(xi)), 1

n

∑n
i=1 ξi

upper bounds empirical risk.

A special case of structural SVMs is M3N (Taskar
et al., 2003), where, first, Ψ(x,y) is constructed from
a Markov random field (MRF)

f(x,y) =
∑

k∈cliques(G)

φk(y{k}) (3)

with graph structure G = (V,E) and, sec-
ond, the loss function is restricted to be lin-
early decomposable in the cliques, i.e., ∆(y, ŷ) =∑

k∈cliques(G) δk(y{k}, ŷ{k}). Here, y is the value as-
signment to variables, δk are sub-component local loss
functions, and φk are potential functions represent-
ing the fitness of variable assignment y{k} to clique k.
The network potential f(x,y) serves as a discriminant
function representing the variable assignment y in the
structural SVM, and h(x) = argmaxy∈Y f(x,y) serves
as the maximum a posteriori (MAP) prediction.

OP 1 requires we express (3) in the form
f(x,y) = wT Ψ(x,y). First express potentials
as φk(y{k}) = wTψ(x, y{k}). The feature vec-
tor functions ψk relate x and label assignments
y{k}. Then, f(x,y) = wT Ψ(x,y) where Ψ(x,y) =∑

k∈cliques(G) ψk(x, y{k}).

In the following, we use a particular linearly decom-
posable loss function that simply counts the propor-
tion of differing labels in y and ŷ, i.e., ∆(y, ŷ) =
‖y − ŷ‖0/|V |. Further, in our applications, labels
are binary (i.e., each yu ∈ B = {0, 1}), and we al-
low only φu(1) and φuv(1, 1) potentials to be non-

Parameter Learning of Loopy MRFs with Structural SVMs

zero. This may seem onerously restrictive, but in
reality, for any pairwise binary MRF with non-zero
φu(0), φuv(0, 0), φuv(0, 1), φuv(1, 0) there is an equiva-
lent MRF where these potentials are zero.

2.2. Approximate Inference in Structural
SVMs

To use Algorithm 1 for MRF prediction and training,
one must solve two problems for each input example i:

Prediction: argmax
y∈Y

wT Ψ(xi,y)

Separation Oracle: argmax
y∈Y

wT Ψ(xi,y) + ∆(yi,y)

Prediction is equivalent to MAP inference, and the
separation oracle can be reduced to a MAP infer-
ence problem over a modified MRF: taking the MRF
we would use for solving argmaxy∈Y wT Ψ(x,y), we
include ∆(yi,y) in the argmax by incrementing the
node potential φu(yu) by 1/|V | for each wrong value
yu 6= yi,u of variable u, since this wrong assignment
increases ∆(yi,y) by 1/|V |. Thus, we can also express
the separation oracle as MAP inference.

Unfortunately, MAP inference is #P -complete for gen-
eral MRFs. Fortunately, we may use any of a variety
of approximate inference methods instead. For pre-
diction and the separation oracle, we explore these ap-
proximate inference methods.

Greedy iteratively makes single variable value assign-
ments depending on what assignment most increases
network potential.

LBP is loopy belief propagation (Pearl, 1988).

Combine runs both greedy and LBP, and picks the
assignment with the highest network potential.

Relaxed relaxes an ILP encoding of MRF inference.
Optimization variables within a labeling y include
both existing yu ∈ B values, and pairwise yuv ∈ B
values indicating if both yu = yv = 1.

max
y

∑
u∈{1..|V |}

yuφu +
∑

u,v∈{1..|V |}

yuvφuv (4)

s.t. ∀u, v. yu ≥ yuv, yv ≥ yuv, yuv ∈ B (5)
yu + yv ≤ 1 + yuv ∀u. yu ∈ B (6)

In implementation, we relax “∈ B” to “∈ [0, 1],” which
admits fractional solutions.

2.3. Implications of Approximations in SSVMs

How does approximate inference change the perfor-
mance and the theoretical guarantees of the structural
SVM? The trouble is, the theory of SSVMs is based

on the existence of an exact classifier and separation
oracle. When we rely on approximations to perform
these tasks it is unclear which properties still hold.

The approximate inference methods listed above can
be grouped into two families: undergenerating and
overgenerating methods.

Undergenerating methods approximate argmaxy∈Y by
argmaxy∈Y , where Y ⊆ Y. Greedy, LBP, and Com-
bine methods are all undergenerating. The danger
with these is some OP 1 constraints may not be found.
What properties still hold for undergenerating approx-
imations? Polynomial time termination still holds, be-
cause the proof does not depend upon the quality of
the separation oracle. However, neither correctness
and empirical risk bound hold, because Algorithm 1
may not find violated constraints present in OP 1.

Overgenerating approximations approximate
argmaxy∈Y by argmaxy∈Y , where Y ⊇ Y. Re-
laxed is an overgenerating approximation: it finds
an exact argmax, but its search space Y admits
fractional solutions. The danger with these is we may
introduce constraints not present in OP 1, leading
to overconstrained problems. What properties still
hold for overgenerating approximations? Polynomial
time termination holds, assuming that max ‖Ψ‖ and
max ‖∆‖ remain bounded over the new Y. Correct-
ness no longer holds since the true solution OP 1
may be infeasible in this overconstrained problem,
but the solution will be feasible in OP 1 unlike for
undergenerating approximations. The empirical risk
bound holds as all constraints in OP 1 are respected.

3. Experiment Setup

Our goal for the following experiments is to evaluate
the performance of the different approximate MRF in-
ference methods in SSVM learning and classification.
We focus on multi-label classification using pairwise
fully connected MRFs, since these problems are small
enough to still allow exact inference via exhaustive
search as a basis for comparison.

3.1. Multi-label Classification

Multi-label classification bears similarity to multi-class
classification, except classes are not mutually exclu-
sive, e.g., a news article may be about both “Iraq”
and “oil.” Often, incorporating inter-label dependen-
cies into the model can improve performance (Cesa-
Bianchi et al., 2006; Elisseeff & Weston, 2002).

How do we model this labeling procedure as an MRF?
For each input x, we construct a single MRF, with a

Parameter Learning of Loopy MRFs with Structural SVMs

Table 1. Basic statistics for the datasets, including number
of labels, training and test set sizes, number of features,
and parameter vector w size.

Dataset Labels Train Test Feats. w Size
Scene 6 1211 1196 294 1779
Yeast 14 1500 917 103 1533

Mediamill 10 29415 12168 120 1245
Reuters 10 2916 2914 47236 472405
Synth1 6 1000 10000 6000 36015
Synth2 10 1000 10000 40 445

vertex for each possible label, with possible values from
B = {0, 1} (value 1 indicates x has the corresponding
label), and an edge for each vertex pair (i.e., complete
graph MRF).

What are our potential functions? In these problems,
inputs x ∈ Rm are feature vectors. Each of the `
possible labels yu is associated with a weight vector
wu ∈ Rm. The resulting vertex potentials are φu(1) =
wu

T x. Edge potentials φuv(1, 1) come from individual
values in w, one for each label pair. Thus, the over-
all parameter vector w ∈ R`m+(`

2) has `m weights for
the ` different w1,w2, . . . ,w` sub-component weight
vectors, and

(
`
2

)
parameters for edge potentials.

In terms of ψ functions, ψu(x, 1) vectors contain an
offset version of x to “select out” wu from w, and
ψuv(x, 1, 1) vectors have a single 1 entry to “select”
the appropriate element from the end of w.

3.2. Datasets

We use six multi-label datasets to evaluate perfor-
mance. Table 1 contains statistics on these datasets.

Four real datasets, Scene (Boutell et al., 2004),
Yeast (Elisseeff & Weston, 2002), Reuters (the
RCV1 subset 1 data set) (Lewis et al., 2004), and Me-
diamill (Snoek et al., 2006), came from the LIBSVM
multi-label dataset collection (Chang & Lin, 2001).

Synth1 is a synthetic dataset of 6 labels. Labels follow
a simple probabilistic pattern: label i is on only if label
i − 1 is on, and then only with 50% probability, and
label 1 is on with 50% probability. Also, each label
has 1000 related binary features (the learner does not
know a priori which feature belong to each label): if i is
on, a random 10 of its 1000 are set to 1. With enough
training data, this hypothesis can be learned without
edge potentials, but exploiting the label dependency
structure may result in better models.

Synth2 is a synthetic dataset of 10 labels. In this
case, each example has exactly one label on. There
are also 40 features. For an example, if label i is on,
4i randomly chosen features are set to 1. Only models
with edge potentials can learn this concept.

3.3. Model Training Details

We want to learn model parameters for each com-
bination of separation oracle and dataset. Struc-
tural SVMs have a regularization hyperparameter
C, chosen from a population of 14 possible values
{1 · 10−2, 3 · 10−2, 1 · 10−1, . . . , 3 · 104} by 10-fold cross
validation on the training set. The “best” C was
then used to train a model on all training data. The
next section discusses the test-set performance of these
models.

4. Results and Analysis

Table 2 reports loss on the test set followed by stan-
dard error. For each dataset, we present losses for
each combination of separation oracle used in learning
(the rows) and of predictive inference procedure used
in classification (the columns). This lets us distinguish
badly learned models from bad inference procedures as
explanations for inferior performance.

We also employ two methods for doing exact infer-
ence in addition to the four approximate methods, as
a point of comparison:

Edgeless involves an MRF with no edges, making ex-
act inference trivial at the cost of having no label de-
pendencies. Consider this baseline.

Exact exhaustively searches all labelings. For com-
parative purposes it is useful to know how we would
do if we actually solved OP 1. Note that in order
to enable comparisons on the Reuters and Mediamill
datasets, we pruned these datasets so only the 10 most
frequent labels were present.

The loss of the “edgeless” model is displayed following
the dataset name, in turn followed by the loss of a
“default” classifier (which always predicts the single
labeling that performs best on the training set).

4.1. Edgy vs. Edgeless Models

In all datasets, an edged model always exceeds the
performance of the edgeless model. However, do not
take this comparison too seriously on Mediamill and
Reuters: selecting only the 10 most frequent labels
on these sets will tend to degrade “edgy” performance
(by robbing it of dependency relationships) and in-
crease “edgeless” performance (since remaining labels
are those with the most data to learn node potentials).

4.2. The Sorry State of LBP

Notice that in Yeast, Reuters, Synth1, and Synth2,
models trained with LBP have terrible performance

Parameter Learning of Loopy MRFs with Structural SVMs

Table 2. Multi-labeling loss on various datasets. Results are grouped by dataset. Rows indicate separation oracle method.
Columns indicate classification inference method. The two quantities in the dataset name row are “edgeless” inference
(baseline) performance, and “default” performance (i.e., best constant model performance).

Greedy LBP Combine Exact Relaxed Greedy LBP Combine Exact Relaxed
Scene Dataset 11.43±0.29 18.10 Mediamill Dataset 18.60±0.14 25.37

Greedy 10.67±0.28 10.74±0.28 10.67±0.28 10.67±0.28 10.67±0.28 23.39±0.16 25.66±0.17 24.32±0.17 24.92±0.17 27.05±0.18
LBP 10.45±0.27 10.54±0.27 10.45±0.27 10.42±0.27 10.49±0.27 22.83±0.16 22.83±0.16 22.83±0.16 22.83±0.16 22.83±0.16

Combine 10.72±0.28 11.78±0.30 10.72±0.28 10.77±0.28 11.20±0.29 19.56±0.14 20.12±0.15 19.72±0.14 19.82±0.14 20.23±0.15
Exact 10.08±0.26 10.33±0.27 10.08±0.26 10.06±0.26 10.20±0.26 19.07±0.14 27.23±0.18 19.08±0.14 18.75±0.14 36.83±0.21

Relaxed 10.55±0.27 10.49±0.27 10.49±0.27 10.49±0.27 10.49±0.27 18.50±0.14 18.26±0.14 18.26±0.14 18.21±0.14 18.29±0.14
Yeast Dataset 20.91±0.55 25.09 Synth1 Dataset 8.99±0.08 16.34

Greedy 21.62±0.56 21.77±0.56 21.58±0.56 21.62±0.56 24.42±0.61 8.86±0.08 8.86±0.08 8.86±0.08 8.86±0.08 8.86±0.08
LBP 24.32±0.61 24.32±0.61 24.32±0.61 24.32±0.61 24.32±0.61 13.94±0.12 13.94±0.12 13.94±0.12 13.94±0.12 13.94±0.12

Combine 22.33±0.57 37.24±0.77 22.32±0.57 21.82±0.56 42.72±0.81 8.86±0.08 8.86±0.08 8.86±0.08 8.86±0.08 8.86±0.08
Exact 23.38±0.59 21.99±0.57 21.06±0.55 20.23±0.53 45.90±0.82 6.89±0.06 6.86±0.06 6.86±0.06 6.86±0.06 6.86±0.06

Relaxed 20.47±0.54 20.45±0.54 20.47±0.54 20.48±0.54 20.49±0.54 8.94±0.08 8.94±0.08 8.94±0.08 8.94±0.08 8.94±0.08
Reuters Dataset 4.96±0.09 15.80 Synth2 Dataset 9.80±0.09 10.00

Greedy 5.32±0.09 13.38±0.21 5.06±0.09 5.42±0.09 16.98±0.26 7.27±0.07 27.92±0.20 7.27±0.07 7.28±0.07 19.03±0.15
LBP 15.80±0.25 15.80±0.25 15.80±0.25 15.80±0.25 15.80±0.25 10.00±0.09 10.00±0.09 10.00±0.09 10.00±0.09 10.00±0.09

Combine 4.90±0.09 4.57±0.08 4.53±0.08 4.49±0.08 4.55±0.08 7.90±0.07 26.39±0.19 7.90±0.07 7.90±0.07 18.11±0.15
Exact 6.36±0.11 5.54±0.10 5.67±0.10 5.59±0.10 5.62±0.10 7.04±0.07 25.71±0.19 7.04±0.07 7.04±0.07 17.80±0.15

Relaxed 6.73±0.12 6.41±0.11 6.38±0.11 6.38±0.11 6.38±0.11 5.83±0.05 6.63±0.06 5.83±0.05 5.83±0.05 6.29±0.06

Table 3. Known approximations table, showing performance change as we use increasingly inferior approximations.

Approx. Scene Yeast Reuters Mediamill Synth1 Synth2
Factor Train Test Train Test Train Test Train Test Train Test Train Test

0.000 0.0497 0.1006 0.1891 0.2023 0.0430 0.0559 0.1765 0.1875 0.0000 0.0686 0.0457 0.0704
0.010 0.0436 0.1087 0.1935 0.2106 0.0401 0.0539 0.1719 0.1813 0.0000 0.0861 0.0520 0.0736
0.025 0.0395 0.1145 0.1927 0.2056 0.0355 0.0499 0.1768 0.1840 0.0364 0.1272 0.0443 0.0676
0.050 0.0906 0.1072 0.1990 0.2098 0.0397 0.0568 0.1809 0.1966 0.0032 0.0664 0.0535 0.0790
0.100 0.0396 0.1074 0.1872 0.2014 0.0390 0.0551 0.1710 0.1784 0.0255 0.1319 0.0621 0.0884
0.150 0.0567 0.1132 0.2004 0.2135 0.0388 0.0521 0.1815 0.1997 0.0145 0.0908 0.0674 0.0857
0.200 0.0515 0.1059 0.1937 0.2104 0.0493 0.0641 0.1925 0.2086 0.0272 0.1409 0.0883 0.1102
0.300 0.0632 0.1108 0.2424 0.2626 0.0522 0.0628 0.2924 0.3001 0.0060 0.0869 0.0956 0.1157
0.400 0.1901 0.2000 0.1900 0.2080 0.0444 0.0544 0.1957 0.2026 0.0421 0.1523 0.1290 0.1548
0.500 0.1083 0.1228 0.2109 0.2231 0.0465 0.0569 0.2989 0.3042 0.0407 0.1092 0.1185 0.1368
1.000 0.7180 0.7100 0.4578 0.4536 0.5848 0.5865 0.3300 0.3475 0.3662 0.3684 0.4938 0.5001

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

 0 200 400 600 800 1000

nu
m

be
r o

f s
up

er
io

r l
ab

el
in

gs

experiment

Performance on 1000 18-label problems

Greedy
LBP

Combine

Figure 1. Inference on 1000 random 18 label problems.

even compared to a method as trivial as greedy, and
on all datasets often yield the least performance as a
classifier. Why might the LBP separation oracle and
classifier perform so poorly?

In one small experiment, we generated 1000 random
MRF problems, and ran Greedy, LBP, and Combine
inference on them. Then, for each result, we exhaus-
tively counted how many labelings with higher network

potential exist. Figure 1 shows the resulting curve.
The lower the curve, the better the inference method.
Though LBP finds “perfect” labelings more often than
Greedy, it also tends to fall into horrible local minima
which skew the learner and classifier.

4.3. Relaxation in Learning and Prediction

First, compare the relaxed training and inference to us-
ing the exact method for training and inference. Both
methods differ only in the presence of the fractional
constraints. The relaxed training appears competitive
with exact training: exact outperforms relaxed train-
ing on four datasets, but loses on two datasets. Fur-
thermore, the performance difference between relaxed
and exact is never very large.

Interestingly, however, relaxation used in prediction
with models trained with non-relaxed methods (i.e.,
models that do not constrain fractional solutions) of-
ten performs quite poorly. The most ludicrous exam-
ples appear in Yeast, Reuters, Mediamill, and Synth
2.

On the other hand, models trained with the relaxed

Parameter Learning of Loopy MRFs with Structural SVMs

separation oracle have relatively consistent and ro-
bust performance, irrespective of the classification in-
ference procedure. Most surprisingly, when using re-
laxed training, LBP never shows catastropic failures
as it does even when using exact training (e.g. Medi-
amill, Synth2). The reason for this effect is uncertain
and subject to future works. Perhaps the parameter-
ization resulting from fractional constraints somehow
“smoothes” the search space, but this is speculation.

4.4. Known Approximations

How robust is SSVM training to increasingly poor ap-
proximate separation oracle methods? To evaluate
this, we built an “artificial” approximate separation
oracle with a known approximation factor: given an
approximation factor α, for example x we can find
the optimal y∗ = argmaxy∈Y f(x,y) with the exact
classifier, and then run another exhaustive search of
possible labelings to find the labeling ŷ such that
f(x, ŷ) ≈ (1 − α)f(x,y∗). In this way, we build an
approximate undergenerating MRF inference method
with known quality.

Table 3 details these results. The first column indi-
cates the approximation factor used in training each
model for each dataset. The remaining columns show
train and test performance using exact inference.

What is promising is that test performance does not
drop precipitously as we use increasingly worse ap-
proximations. For most problems, the performance
remaining reasonable even for approximation factors
as high as 0.1.

5. Conclusion

We explored the performance of approximate inference
and separation oracle methods in structural SVMs for
learning parameters in completely connected Markov
random fields. Methods were based on greedy search,
loopy belief propagation, and a linear programming
relaxation. In addition to a theoretical comparison,
we also empirically compared performance on a multi-
label classification problem. The relaxation approxi-
mation distinguished itself as preserving key theoreti-
cal properties of structural SVMs, as well as learning
robust predictive models.

Acknowledgments

This work was supported under NSF Award IIS-
0412894 and through a gift from Yahoo! Inc.

References

Altun, Y., Tsochantaridis, I., & Hofmann, T. (2003). Hid-
den Markov support vector machines. ICML (pp. 3–10).

Boutell, M. R., Luo, J., Shen, X., & Brown, C. M. (2004).
Learning multi-label scene classification. Pattern Recog-
nition, 37, 1757–1771.

Cesa-Bianchi, N., Gentile, C., & Zaniboni, L. (2006). Hi-
erarchical classification: combining Bayes with SVM.
ICML (pp. 177–184). New York, NY, USA: ACM Press.

Chang, C.-C., & Lin, C.-J. (2001). LIBSVM : A
library for support vector machines. Software at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Collins, M. (2002). Discriminative training methods for
hidden markov models: theory and experiments with
perceptron algorithms. ACL-EMNLP (pp. 1–8). Mor-
ristown, NJ, USA: Association for Computational Lin-
guistics.

Elisseeff, A., & Weston, J. (2002). A kernel method for
multi-labelled classification. NIPS.

Finley, T., & Joachims, T. (2005). Supervised clustering
with support vector machines. ICML (pp. 217–224).
New York, NY, USA: ACM Press.

Joachims, T. (2005). A support vector method for mul-
tivariate performance measures. ICML (pp. 377–384).
New York, NY, USA: ACM Press.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Condi-
tional random fields: Probabilistic models for segment-
ing and labeling sequence data. ICML (pp. 282–289).
Morgan Kaufmann, San Francisco, CA.

Lewis, D. D., Yang, Y., Rose, T. G., & Li, F. (2004). Rcv1:
A new benchmark collection for text categorization re-
search. J. Mach. Learn. Res., 5, 361–397.

Pearl, J. (1988). Probabilistic reasoning in intelligent sys-
tems: networks of plausible inference. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc.

Snoek, C. G. M., Worring, M., van Gemert, J. C., Geuse-
broek, J.-M., & Smeulders, A. W. M. (2006). The chal-
lenge problem for automated detection of 101 semantic
concepts in multimedia. ACM-MULTIMEDIA (pp. 421–
430). New York, NY, USA: ACM Press.

Taskar, B., Guestrin, C., & Koller, D. (2003). Max-margin
markov networks. In NIPS 16. Cambridge, MA: MIT
Press.

Tsochantaridis, I., Hofmann, T., Joachims, T., & Altun,
Y. (2004). Support vector machine learning for interde-
pendent and structured output spaces. ICML.

Tsochantaridis, I., Joachims, T., Hofmann, T., & Altun,
Y. (2005). Large margin methods for structured and
interdependent output variables. JMLR, 6, 1453–1484.

Yu, C.-N., Joachims, T., Elber, R., & Pillardy, J. (2007).
Support vector training of protein alignment models.
RECOMB.

