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Abstract

We present a new method for transductive
learning, which can be seen as a transductive
version of the k nearest-neighbor classifier.
Unlike for many other transductive learning
methods, the training problem has a mean-
ingful relaxation that can be solved glob-
ally optimally using spectral methods. We
propose an algorithm that robustly achieves
good generalization performance and that
can be trained efficiently. A key advantage of
the algorithm is that it does not require ad-
ditional heuristics to avoid unbalanced splits.
Furthermore, we show a connection to trans-
ductive Support Vector Machines, and that
an effective Co-Training algorithm arises as
a special case.

1. Introduction

For some applications, the examples for which a pre-
diction is needed are already known when training the
classifier. This kind of prediction is called Transduc-
tive Learning (Vapnik, 1998). An example of such a
task is relevance feedback in information retrieval. In
relevance feedback, users can give positive and neg-
ative examples for the kinds of documents they are
interested in. These documents are the training ex-
amples, while the rest of the collection is the test set.
The goal is to generalize from the training examples
and find all remaining documents in the collection that
match the users information need.

Why is the transductive setting different from the reg-
ular inductive setting? In the transductive setting,
the learner can observe the examples in the test set
and potentially exploit structure in their distribution.
Several methods have been designed with this goal in
mind. Vapnik introduced transductive SVMs (Vap-
nik, 1998) which were later refined by (Bennett, 1999)
and (Joachims, 1999). Other methods are based on
s-t mincuts (Blum & Chawla, 2001) or on multi-way
cuts (Kleinberg & Tardos, 1999). Related is also the
idea of Co-Training (Blum & Mitchell, 1998), which

exploits structure resulting from two redundant repre-
sentations. We will study what these approaches have
in common and where they have problems. In partic-
ular, we will focus on s-t Mincuts, Co-Training, and
TSVMs and show that they have undesirable biases
that require additional, difficult to control heuristics.

To overcome this problem, we first propose and moti-
vate a set of design principles for transductive learn-
ers. Following these principles, we introduce a new
transductive learning method that can be viewed as a
transductive version of the k nearest-neighbor (kNN)
rule. One key advantage is that it does not require
greedy search, but leads to an optimization problem
that can be solved efficiently and globally optimally
via spectral methods. We evaluate the algorithm em-
pirically on 6 benchmarks, showing improved and more
robust performance than for transductive SVMs. Fur-
thermore, we show that Co-Training emerges as a spe-
cial case and that the new algorithm performs substan-
tially better than the original Co-Training algorithm.

2. Transductive Learning Model

The setting of transductive inference was introduced
by V. Vapnik (see (Vapnik, 1998)). The learning task
is defined on a fixed array X of n points (&1, Zs, ..., ).
Each data point has a desired classification Y =
(y1, Y2, .-, yn). For simplicity, let’s assume the labels
y; are binary, i.e. y; € {4+1,—1}, and that the data
points & are vectors in #V. For training, the learner
receives the labels for a random subset

Y, C [1..n] Vi| =1 (1)
of I < n (training) data points. The goal of the learner
is to predict the labels of the remaining (test) points
in X as accurately as possible.

Vapnik gives bounds on the deviation of error rates
observed in the training sample and in the test sam-
ple (Vapnik, 1998). The bounds depend on the ca-
pacity d% of the hypothesis space H%, which can be
measured, for example, as the number of different la-
belings the learner £ can potentially produce on X.
The smaller d%, the smaller the bound. Following
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the idea of structural risk minimization (SRM) (Vap-
nik, 1998), one can consider a sequence of learners
L1, Lo, ... with nested hypothesis spaces so that their
capacity increases d5! < d? < ... < 2". If the struc-
ture is well aligned with the learning task, the bound
limits the generalization error. What information can
we exploit to built a good structure?

3. Principles for Designing a
Transductive Learner

In contrast to inductive learning, the transductive
learner can analyze the location of all data points
Z; € X, in particular those in the test set. Therefore, a
transductive learner can structure its hypothesis space
based on X. How can the location of the test points
help design a good hypothesis space?

Imagine we knew the labels of all examples ¥; € X, in-
cluding both the training and the test examples. Let’s
call this the perfect classification. If we gave all these
examples to an inductive learner £?, it would be
learning from a large training set and it might be rea-
sonable to assume that £"¢ learns an accurate classi-
fier. For example, our experience might tell us that for
text classification, SVMs typically achieve low predic-
tion error if we have at least 10,000 training examples.
Therefore, if X contains 10,000 data points, we would
expect that an SVM given all labels Y achieves low
leave-one-out cross-validation error Ew{;iVM(X ,Y) on
(X,Y), since Errf (X,Y) is an (almost) unbiased es-
timate of the prediction error that typically has low
variability.

How can this help a transductive learner that has ac-
cess to only a small subset Y; of the labels? Assum-
ing that an inductive learner £¢ achieves low pre-
diction error when trained on the full X implies that
the perfect classification of the test set is highly self-
consistent in terms of leave-one-out error. If a trans-
ductive learner L7 uses only those labelings of the
test set for which the corresponding inductive learner
L7975 has low leave-one-out error, the transductive
learner will not exclude the perfect classification, while
potentially excluding bad labelings. This suggests the
following SRM structure for a transductive learner

Ct’r‘(l’ns ind k
7 = { B i < £ )

leading to a general principle for defining a transduc-
tive learner from an inductive learner. A transductive
learner should label the test set so that

Postulate 1: it achieves low training error, and

Postulate 2: the corresponding inductive learner is
highly self-consistent (e.g. low leave-one-out).

While initially not phrased in these terms, a trans-
ductive SVM (Vapnik, 1998)(Joachims, 1999) follows
these two postulates (Joachims, 2002). A trans-
ductive SVM labels the test examples so that the
margin is maximized. A large-margin SVM can be
shown to have low leave-one-out error (Vapnik, 1998).
Other transductive learning algorithms like transduc-
tive ridge-regression (Chapelle et al., 1999) and min-
cuts (Blum & Chawla, 2001) minimize leave-one-out
error as well. However, leave-one-out is not the only
measure of self-consistency. The co-training algorithm
(Blum & Mitchell, 1998) maximizes consistency be-
tween two classifiers. It will be discussed in more detail
in Section 5.2.

However, the following shows that Postulates 1 and
2 are not enough to define an effective transductive
learner. Consider the case of k-Nearest Neighbor
(kNN) (k odd). The ANN-rule makes a leave-one-out
error on example (Z;, y;), if the majority of the nearest
neighbors are not from the same class. For a similarity-
weighted KNN, we can define a margin-like quantity

, YW
5i:vaJekNN(rl)yJ J 3)

K3
ZmekNN(rE‘i) Wim

where w;; reflects the similarity between z; and x;.
The similarity weighted kKNN-rule makes a leave-one-
out error whenever §; < 0. Therefore, an upper bound
on the leave-one-out error is

n
ENN
L

Errf, (XY) < > (1-6). (4)

=1

While it is computationally difficult to find a label-
ing of the test examples that minimizes the leave-one-
out error of kNN while having a low training error,
there are efficient algorithms for minimizing the upper
bound (4). We can write this as the following opti-
mization problem:

maxg Z Z YilYj 5 2 " (5)
i=1 jekNN () mekNN(Z;) Tvm

s.t. y; = 1, if i € Y} and positive (6)

y; = —1, if i € ¥; and negative (7)

Vj:y; € {+1,-1} (8)

In matrix notation, the objective can be written equiv-

ST A7 _ Wij p = e
alently as y§* Ay where A;; = ZkekNN(a‘rfi)wik if Z; is
among the k nearest neighbors of Z; and zero oth-
erwise. While the problem is typically not convex,
there are efficient methods for its solution. In par-
ticular, A can be thought of as the adjacency ma-
trix of a graph, so that vertices represent examples

and edges represent similarities (see Figure 1). At



Figure 1. Mincut example.

the solution #*, denote with Gt the set of examples
(i.e. vertices) with y; = 1, and with G~ those with
y; = —1. GT and G~ define a cut (bi-partitioning)
of the graph. For an undirected graph, the cut-value
cut(GT,G7) = Y icar Yoica- Aij is the sum of the
edge-weights across the cut. Since the maximum of
(5) is determined by the matrix entries A,; with y;y;, =
—1, minimizing >3, __; Ajj = 2-cut(G*, G7) maxi-
mizes (5). Therefore, for undirected graphs, maximiz-
ing (5) subject to (6)-(8) is equivalent to finding the s-t
mincut where the positive examples form the source,
and the negative examples form the sink. The s-t min-
cut is a cut that separates positive and negative exam-
ples while minimizing the cut value. This connects to
the transduction method of Blum and Chawla (Blum
& Chawla, 2001). They use mincut/maxflow algo-
rithms, starting from the intuition that the separation
of positive and negative examples should put strongly
connected examples into the same class. Blum and
Chawla discuss the connection to leave-one-out error
in the case of 1-NN.

While the s-t mincut algorithm is intuitively appeal-
ing, it easily leads to degenerate cuts. Consider the
graph in Figure 1, where line thickness indicates edge
weight A;;. The graph contains two training examples
which are labeled as indicated. All other nodes repre-
sent test examples. While we would like to split the
graph according to the two dominant clusters, the s-t
mincut leads to a degenerate solution that just cuts off
the positive example. The behavior is due to the fact
that s-t mincut minimizes the sum of the weight, and
that balanced cuts have more potential edges to cut.
While using a sparser graph would help in the example,
this degenerate behavior also occurs for kNN graphs
whenever the correct partitioning has more “wrong”
neighbors than edges connecting the training exam-
ples to the unlabeled examples. This is practically
always the case for sufficiently large numbers of un-
labeled examples. Consider an (undirected) 100-NN
graph, where each example has 99 of its neighbors in
the correct class, and 1 in the incorrect class. If there
is one positive training example, then this example
will on average have 200 in/out edges. So, if there
are more than 200 unlabeled examples, s-t mincut will
return a degenerate cut even for such a strongly clus-
tered graph. Since these degenerate cuts fulfill Postu-
late 1 (i.e. zero training error) and Postulate 2 (high
self consistency in terms of leave-one-out), Postulates

1 and 2 do not yet specify a transductive learner suffi-
ciently. One other reasonable constraint to put on the
transductive solution is the following postulate.

Postulate 3: Averages over examples (e.g. average
margin, pos/neg ratio) should have the same ex-
pected value in the training and in the test set.

Again, this postulate can be motivated using the per-
fect classification. For example, the average margin of
kNN should fulfill

PO =Y | 6| PO )
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for the perfect classification, since the distribution
P(Y;) of drawing a training set is uniform over all sub-
sets.

The s-t mincut violates Postulate 3 both for the
pos/neg ratio, as well as for the average margin.
In particular, training examples have negative mar-
gins, while test examples have large margin. Other
functions are conceivable as well (Joachims, 2002).
Blum and Chawla experiment with different heuris-
tics for pre-processing the graph to avoid degener-
ate cuts. However, none appears to work well across
all problems they study. Other transductive learning
algorithms have similar degeneracies. For example,
in transductive SVMs (Joachims, 1999) and in Co-
Training (Blum & Mitchell, 1998) the fraction of pos-
itive examples in the test set has to be fixed a priori.
Such constraints are problematic, since for small train-
ing sets an estimated pos/neg-ratio can be unreliable.
How can the problem of degenerate cuts be avoided in
a more principled way?

4. Normalized Graph Cuts with
Constraints

The problem of s-t mincut can be traced to its objec-
tive function (5), which aims to minimize the sum of
the edge weights cut through. The number of elements
in the sum depends directly on the size of the two cut
sets. In particular, the number of edges a cut with
|G| vertices on one side and |G| vertices on the other
side can potentially cut through is |G*||G~|. The s-
t mincut objective is inappropriate, since it does not
account for the dependency on the cut size. A natural
way to normalize for cut size is by dividing the objec-
tive with |GT||G~|. Instead of minimizing the sum of
the weights, the following optimization problem mini-
mizes the average weight of the cut.



cut(GT,G7)

maxy - . (10)
Y iy =y = -1

s.t. y; = 1, if i € Y] and positive (11)

y; = —1, if ¢ € ¥} and negative (12)

ge{+1,-1}" (13)

This problem is related to the ratiocut (Hagen &
Kahng, 1992). However, the traditional ratiocut prob-
lem is unsupervised, i.e. there are no constraints (11)
and (12). Solving the unconstrained ratiocut is known
to be NP hard (Shi & Malik, 2000). However, effi-
cient methods based on the spectrum of the graph
exist that give good approximations to the solution
(Hagen & Kahng, 1992). The following will generalize
these methods to the case of constrained ratiocuts for
transduction.

Let’s denote with L = B— A the Laplacian of the graph
with adjacency matrix A and diagonal degree matrix
B, By =5 j Aij. We require that the graph is undi-
rected, so that L is symmetric positive semi-definite.
Following (Dhillon, 2001) and ignoring the constraints,
the unsupervised ratiocut optimization problem can
equivalently be written as

Lz

2Tz

where vy = ,/% and y_ = —,/%. It is
straightforward to verify that 272 = n and 271 = 0

for every feasible point. While this problem is still NP
hard, the minimum of its real relaxation

minz with z; € {y4+,7-} (14)

ming Lz (15)

s.t. M1=0and 2T7=n (16)

is equal to the second eigenvalue of L and the corre-
sponding eigenvector is the solution. Using this solu-
tion of the relaxed problem as an approximation to the
solution of (14) is known to be effective in practice.

Moving to the supervised ratiocut problem, we pro-
pose to include constraints (11) and (12) by adding a
quadratic penalty to the objective function.

miny 2 L7+ c(Z-F)TC(EZ-7)  (17)
st.  Z'1=0and ZT7=n (18)

For each labeled example, the corresponding element
of 4 is equal to 44 (§-) for positive (negative) exam-
ples, and it is zero for test examples. 44 and 9_ are
estimates of v and y_ (e.g. based on the number of
observed positive and negative examples in the train-
ing data). We will see later that these estimates do
not need to be very precise. ¢ is a parameter that
trades off training error versus cut-value, and C is

a diagonal cost matrix that allows different misclas-
sification costs for each example. Taking the eigen-
decomposition L = UXU” of the Laplacian, one can
introduce a new parameter vector w and substitute
Z = Uw. Since the eigenvector of the smallest eigen-
value of a Laplacian is always 1, the constraint (16) be-
comes equivalent to setting w; = 0. Let V' (D) be the
matrix with all eigenvectors U (eigenvalues X.) except
the smallest one, then we get the following equivalent
optimization problem.

ming W' Dw+ (Vi — )" C(Vw —7) (19)
s.t. Wl =n (20)

Defining G = (D + ¢VTCV) and b = ¢VTC7, the
objective function can also be written as W/ Gw —
2670 + ¢yT C7, where the last term can be dropped
since it is constant. Following the argument in (Gan-
der et al., 1989), Problem (19)-(20) is minimized for
@* = (G—A\*I)"'b, where \* is the smallest eigenvalue
of

i G| 2

I is the identity matrix. From this we can compute the
optimal value of (17) and (18) as z* = V™, producing
a predicted value for each example. We can use this
value to rank the test examples, or use a threshold to
make hard class assignment. An obvious choice for the
threshold is the midpoint © = 1(§4 + 4—) which we
will use in the following, but more refined methods are
probably more appropriate.

5. Spectral Graph Transducer

The basic method for computing supervised rati-
ocuts suggests the following algorithm for trans-
ductive learning, which we call a Spectral Graph
Transducer (SGT). An implementation is available at
http://sgt.joachims.org. Input to the algorithm
are the training labels Y;, and a weighted undirected
graph on X with adjacency matrix A. In the following,
we will use the similarity-weighted k nearest-neighbor
graph

sim(Z;,T;) FP .
L if Z; € knn(Z;
A;J - { kaeknn(ifi) s1m(Ti, ) / ( ) (22)
0 else

over X symmetricized by A = A’ + AT, The first
step preprocesses the graph, which has to be done only
once:

e Compute diagonal degree matrix B, B;; = > ;Aij

e Compute Laplacian L = B — A, or compute nor-
malized Laplacian L = B~1(B—A) corresponding
to the normalized-cut criterion of (Shi & Malik,
2000).



e Compute the smallest 2 to d 4+ 1 eigenvalues and
eigenvectors of L and store them in D and V.

e To normalize the spectrum of the graph, replace
the eigenvalues in D with some monotonically in-
creasing function. We use D;; = i2 (see also
(Chapelle et al., 2002)). Fixing the spectrum of
the graph in this way abstracts, for example, from
different magnitudes of edge weights, and focuses
on the ranking among the smallest cuts.

The following steps have to be done for each new train-
ing set:

e Estimate 44 = ,/% and - = — %, where [
(I-) is the number of positive (negative) training
examples. Set v, = 94 (v = —) for positive

(negative) examples.

e To give equal weight to positive and negative ex-
amples, set cost of positive (negative) training ex-
amples to C“ = (Cl = ) C“ = 0 for all

l
20+ 20

test examples.

e Compute G = (D+cVTCV) and b = ¢VTCF and
find smallest eigenvalue A* of Equation (21).

e Compute predictions as z* = V(G — \*I)~1b,
which can be used for ranking.

e Threshold z* wrt. © = (94 +4_) to get hard
class assignments y; = sign(z; — ©).

5.1. Connection to Transductive SVMs

The following argument shows the relationship of the
SGT to a TSVM. We consider the TSVM as described
in (Joachims, 1999). For hyperplanes passing through
the origin, the TSVM optimizes

ming mazgso 1Ta — %deiag(g]) Adiag(y)a (23)
s.t. y; =1, if i € Y] and positive  (24)

y; = —1, if i € Y] and negative (25)

ye{+1,-1}" (26)

iy =1} =p. (27)

For our analysis, we simplify this problem by adding
the constraint a; = as = ... = ;. Since the objective
(23) can now be written as na — 32§’ Ay where o
is a scalar, the maximum is achieved for a* = gTLAg'
Substituting the solution into the objective shows that
the value of the maximum is %;ng This shows that
the simplified TSVM problem is equivalent to an s-t
mincut on graph A, where the balance of the cut is
fixed by (27). The SGT removes the need for fixing

the exact cut size a priori.

5.2. Connection to Co-Training

Co-training can be applied, if there are two redun-
dant representations A and B of all training exam-
ples (Blum & Mitchell, 1998). The goal is to train
two classifiers h* and hZ, one for each representation,
so that their predictions are maximally consistent, i.e.
hA(Z) = hB(Z) for most examples #. With this goal,
Blum and Mitchell propose a greedy algorithm that it-
eratively labels examples for which one of the current
classifiers is most confident. However, also for this al-
gorithm the ratio of predicted positive and negative
examples in the test set must be fixed a priori to avoid
degenerate solutions.

Co-training emerges as a special case of the SGT. Con-
sider a kNN classifiers for each of the two representa-
tions and note that Y1 (2 — 6 — 67) (see Eq. (3))
is an upper bound on the number of inconsistent pre-
dictions. Therefore, to maximize consistency, we can
apply the SGT to the graph that contains k links for
the kNN from representation A, as well as another k
links per example for the kNN from representation B.

5.3. Connections to other Work

Several other approaches to using unlabeled data for
supervised learning exist. Most related is the approach
to image segmentation described in (Yu et al., 2002).
They aim to segment images under higher level con-
straints. One difference is that they arrive at con-
strained cut problems where all the constraints are
homogeneous, leading to a different technique for their
solution. The spectrum of the Laplacian is also consid-
ered in the recent work in (Chapelle et al., 2002) and
(Belkin & Niyogi, 2002). They use the leading eigen-
vectors for feature extraction and the design of kernels.
In addition, Chapelle et al. use the same normaliza-
tion of the spectrum. Szummer and Jaakkola apply
short random walks on the NN graph for labeling
test examples, exploiting that a random walk will less
likely cross cluster boundaries, but stay within clusters
(Szummer & Jaakkola, 2001). There might be an in-
teresting connection to the SGT, since the normalized
cut minimizes the transition probability of a random
walk over the cut (Meila & Shi, 2001). This might
also lead to a connection to the generative modeling
approach of Nigam et al., where the label of each test
example is a latent variable (Nigam et al., 2000).

6. Experiments

To evaluate the SGT, we performed experiments on
six datasets and report results for all of them. The
datasets are the ten most frequent categories from
the Reuters-21578 text classification collection follow-
ing the setup in (Joachims, 1999), the UCI Reposi-



Table 1. PRBEP (macro-) averages for five datasets and
training sets of size [. n is the total number of examples,
and N is the number of features.

Task N n [ SGT ENN TSVM SVM
Optdigits 64 1797 10 83.4 624 61.5 61.6
Reuters 11846 3299 17 57.0 46.7 51.5 49.1
Isolet 617 7797 20 55.4 47.4 - 46.3
Adult 123 32561 10 54.5 46.0 47.3" 46.2

Tonosphere 34 351 10 79.6 76.7 80.6 80.6

tory datasets OPTDIGITS (digit recognition), ISO-
LET (speech recognition), IONOSPHERE, as well as
the ADULT data in a representation produced by John
Platt. To evaluate the Co-Training connection, we use
the WebKB data of Blum and Mitchell with TFIDF
weighting.

The goal of the empirical evaluation is threefold. First,
we will evaluate whether the SGT can make use of
the transductive setting by comparing it against induc-
tive learning methods, in particular kNN and a linear
SVM. Second, we compare against existing transduc-
tion methods, in particular a TSVM. And third, we
evaluate how robustly the SGT performs over differ-
ent data sets and parameter settings.

For all learning tasks, both kNN and the SGT (with
normalized Laplacian I = B~(B — A)) use the cosine
as the similarity measure. While this is probably sub-
optimal for some tasks, the following results indicate
that it is a reasonable choice. Furthermore, it equally
affects both kNN and the SGT, so that relative com-
parisons between the two remain valid. If an example
has zero cosine with all other examples, it is randomly
connected to k nodes with uniform weight.

To make sure that performance differences against the
other learning methods are not due to bad choices for
their parameters, we give the conventional learning
methods (i.e. kKNN, SVM, TSVM) an unfair advan-
tage. For these methods we report the results for the
parameter setting with the best average performance
on the test set. For the SGT, on the other hand, we
chose ¢ = 3200 and d = 80 constant over all datasets.
The choice of k£ for building the k nearest-neighbor
graph is discussed below.

All results reported in the following are averages over
100 stratified transductive samples'. So, all substan-
tial differences are also significant with respect to this
distribution. Samples are chosen so that they contain
at least one positive example. While we report er-
ror rate where appropriate, we found it too unstable

! An exception is the TSVM on Adult and Isolet, where
100 samples would have been prohibitively expensive.

Table 2. PRBEP / error rate on the WebKB “course” data
averaged over training sets of size 12.

Features SGT kENN TSVM SVM B&M

cotrain  93.4/3.3 -/ -/- .- -/5.0
page+link 87.1/5.9 79.7/10.1 92.0/4.3 82.3/20.3 -/-

page 86.2/6.2 73.2/13.3 91.4/4.6 75.4/21.6 -/12.9
link 75.9/22.1 71.9/13.1 79.9/8.9 75.0/18.5 -/12.4

for a fair comparison with very unbalanced class ra-
tios. We therefore use rank-based measures for most
comparisons. The most popular such measure in infor-
mation retrieval is the Precision/Recall curve, which
we summarize by its Break-Even Point (PRBEP) (see
e.g. (Joachims, 1999)). For tasks with multiple classes
(i.e. Reuters, OPTDIGITS, and ISOLET), we summa-
rize the performance by reporting an average over all
classes (i.e. macro-averaging).

Does the Unlabeled Data Help Improve Predic-
tion Performance? The results are summarized in
Table 1. On all tasks except Ionosphere, the SGT
gives substantially improved prediction performance
compared to the inductive methods. Also, the SGT
performs better than ANN (as its inductive variant),
on each individual binary task of Reuters and Optdig-
its. For Isolet, the SGT performs better than NN on
23 of the 26 binary tasks.

The improvements of the TSVM are typically smaller.
On Adult, the TSVM was too inefficient to be applied
to the full dataset, so that we give the results for a
subsample of size 2265. The TSVM failed to produce
reasonable results for Isolet. While the TSVM does
improve performance on Reuters, the improvement is
less than reported in (Joachims, 1999). There, the as-
sumption is made that the ratio of positive to negative
examples in the test set is known accurately. However,
this is typically not the case and we use an estimate
based on the training set in this work. If the true
fraction is used, the TSVM achieves a performance of
62.3. While (Joachims, 2002) proposes measures to de-
tect when the wrong fraction was used, this can only
be done after running the TSVM. Repeatedly trying
different fractions is prohibitively expensive.

How Effective is the SGT for Co-Training? Ta-
ble 2 shows the results for the co-training on WebKB.
We built the graph with 200NN from the page and
200NN from the links. The table compares the co-
training setting with just using the page or the links,
and a combined representation where both feature sets
are concatenated. The SGT in the co-training set-
ting achieves the highest performance. The TSVM
also gives large improvements compared to the induc-
tive methods, outperforming the SGT. However, the
TSVM cannot take advantage of the co-training set-
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Figure 2. Amount by which the PRBEP of the SGT ex-
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Figure 3. Amount by which the PRBEP of the SGT is
lower for a particular number of eigenvectors d compared
to the PRBEP of the best d (I as in Tables 1 and 2).

ting. The results from (Blum & Mitchell, 1998) are
added in the last column.

For which Training Set Sizes is Transductive
Learning most Effective? Figure 2 shows the dif-
ference in average PRBEP between the SGT and
kNN for different training set sizes. For all learn-
ing tasks, the performance improvement is largest for
small training sets. For larger sets, the performance of
the SGT approaches that of KNN. The negative values
are largely due to the bias from selecting the param-
eters of kNN based on the test set. If this is also
allowed for the SGT, the differences vanish or become
substantially smaller.

How Sensitive is the SGT to the Choice of the
Number of Eigenvectors? Figure 3 plots the loss
of PRBEP compared to the PRBEP achieved on the
test set for the optimal number of eigenvectors. On all
tasks, the SGT achieves close to optimal performance,
if more than 40 eigenvectors are included. We conclude
that d > 40 should be sufficient for most tasks.
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Figure 4. Amount by which the PRBEP of the SGT is
lower for a particular value of ¢ compared to the best c.
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Figure 5. Average PRBEP and the average normalized
value of the objective function (vertically flipped and po-
sitioned to fit the graph) for the SGT depending on the
number of nearest neighbors (I as in Tables 1 and 2).

How Sensitive is the SGT to the Choice of the
Error Parameter? Analogous to Figure 3, Figure
4 plots the loss of PRBEP compared to the best value
of ¢. Due to the normalization of the spectrum of the
Laplacian, the optimum values of ¢ are comparable
between datasets. For most tasks, the performance is
less than two PRBEP points away from the optimum
for any ¢ between 1600 and 12800. An exception is
Isolet, which requires larger values. We conclude that
any ¢ between 3200 and 12800 should give reasonable
performance for most tasks.

How Sensitive is the SGT to the Choice of the
Graph? Unlike ¢ and d, the choice of k for building
the k nearest-neighbor graph has a strong influence on
the performance. The top part of Figure 5 shows aver-
age PRBEP depending on k. How should we select k?
For small training set sizes (often only one positive ex-
ample), cross-validation is not feasible. However, the
value of the objective function can be interpreted as a



measure of capacity and might be suitable for model
selection. The bottom half of Figure 5 shows the aver-
age value of the objective function after normalization.
In particular, the objective value o;; for training set
i and choice of k is normalized to o™ = 2k —.
The average normalized objective tracks the perfor-
mance curve very well, suggesting that there might be
an interesting connection between this value and the
capacity of the SGT. For all experiments reported in
the previous section, we used the value of k that min-
imizes the average normalized objective. For Adult,
this is £ = 100, for Reuters k£ = 800, for Optdigits
k = 10, for Isolet £ = 100, for Ionosphere k£ = 100,
and for Co-Training k = 2% 200. Such a kind of model
selection might be particularly useful for tasks like rel-
evance feedback in information retrieval, where there
are many learning tasks with few examples on the same
collection of objects.

How Efficiently can the SGT be Trained? Due
to our naive implementation, most of the time is spent
on computing the k-NN graph. However, this can be
sped up using appropriate data structures like inverted
indices or KD-trees. Computing the 81 smallest eigen-
values takes approximately 1.5 minutes for a task with
10,000 examples and 100 neighbors on a 1.7GHz CPU
using Matlab. However, these preprocessing steps have
to be performed only once. Training on a particular
training set and predicting 10,000 test examples takes
less than one second.

7. Conclusions

We studied existing transductive learning methods
and abstracted their principles and problems. Based
on this, we introduced a new transductive learning
method, which can be seen as the a transductive ver-
sion of the KNN classifier. The new method can be
trained efficiently using spectral methods. We evalu-
ated the classifier on a variety of test problems showing
substantial improvements over inductive methods for
small training sets. Unlike most other algorithms that
use unlabeled data, it does not need additional heuris-
tics to avoid unbalanced splits. Furthermore, since
it does not require greedy search, it is more robust
than existing methods, outperforming the TSVM on
most tasks. Modeling the learning problem as a graph
offers a large degree of flexibility for encoding prior
knowledge about the relationship between individual
examples. In particular, we showed that Co-Training
arises as a special case and that the new algorithm
outperforms the original Co-Training algorithm. The
algorithm opens interesting areas for research. In par-
ticular, is it possible to derive tight, sample dependent
capacity bounds based on the cut value? Furthermore,
it is interesting to consider other settings beyond co-
training that can be modeled as a graph (e.g. temporal

drifts in the distribution, co-training with more than
two views, etc.).
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