Retrospective ICML99 Transductive Inference for Text Classification using Support Vector Machines

Thorsten Joachims

Then: Universität Dortmund, Germany

Now: Cornell University, USA

Outline

- The paper in a nutshell
- Connections to other semi-supervised methods
 - Co-training
 - Graph Mincuts
 - Normalized cuts
 - Harmonic functions
 - Manifold methods
 - Random walks
- Post-mortem
- Valuable life lessons

Input

Tom Mitchell

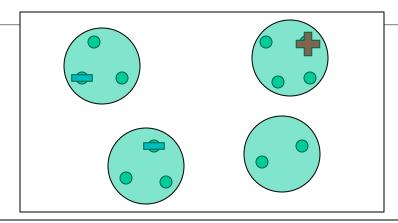
"What can we do with all the text data on the web?"

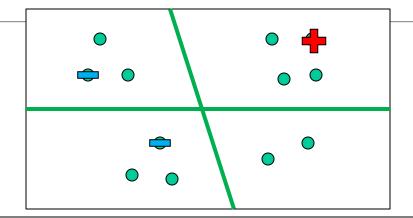
- -[Blum/Mitchell] Co-training
 - Exploit redundant representations
- -[Nigam/McCallum/Thrun/Mitchell]Semi-supervised Naïve Bayes
 - Generatively model clusters in P(X)
 - Mixture model

Vladimir Vapnik

Transduction: Predicting only at known locations is easier

- Finite number of predictions vs.
 continuous function
- Define margin w.r.t. test points
- Generalization error bounds





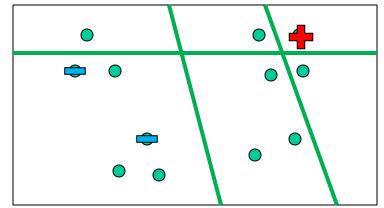
Transductive SVMs

• Objective [Vapnik]: Max margin on training and test set

balance

constraint

- Input:
 - Location of examples: $\{x_1 \dots x_n\}$
 - Labels for subset L of examples



Hard Margin:

$$egin{aligned} & \min_{m{y}} \ \min_{m{w}} \ \frac{1}{2} m{w}^T m{w} \ & s.t. \ \ orall_i : y_i [m{w}^T m{x} + b] \geq 1 \ & orall_i \in L : y_i = 1/-1 \ & m{y} \in \{+1, -1\} \end{aligned}$$
 Class

 $y^T 1 = c \longleftarrow$

Soft Margin:

Text and Margins

		nuclear	physics	atom	pepper	basil	salt	and	
+	D1	1						1	
	D2	1	1	1				1	
	D3			1				1	
	D4				1	1		1	
	D5				1		1	1	
	D6					1	1	1	

Altavista (1999)

- hits(pepper & salt) \rightarrow 327K
- hits(pepper & physics) \rightarrow 4.2K
- hits(physics) > hits(salt)

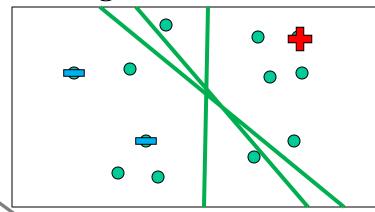
Google (2009)

- hits(pepper & salt) \rightarrow 159M
- hits(pepper & physics) \rightarrow 1.3M
- hits(physics) = 107M > hits(salt) = 56M

Prof. Michael Pepper → Prof. Sir Michael Pepper

Training Algorithm

- Algorithm (http://svmlight.joachims.org)
 - Assign labels to test examples(s.t. class balance constraint)
 - Train supervised SVM
 - -DO
 - Find pair of test labels to flip
 - Retrain supervised SVM
 - WHILE objective decreased



Soft Margin:

Smoothed objective to avoid local optima Smoothing reduced as optimization progresses

Criterion for selecting pair that guarantees descent Criterion is efficiently computable

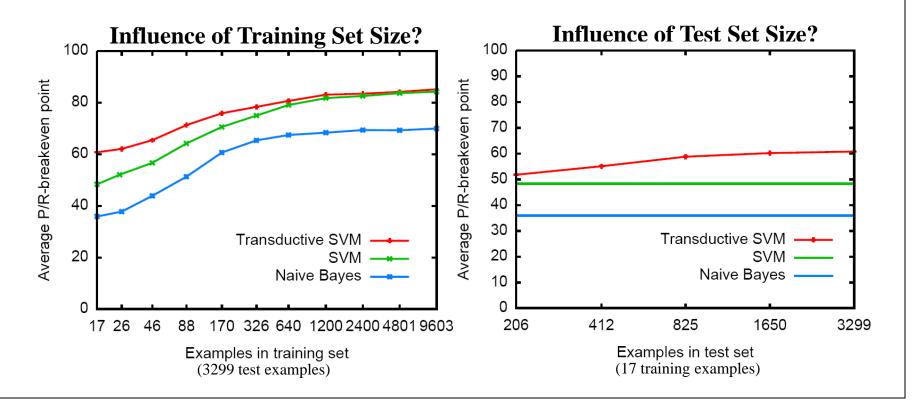
$$\forall i \in L : y_i = 1/-1$$

 $\boldsymbol{y} \in \{+1, -1\}$
 $\boldsymbol{y}^T \boldsymbol{1} = c$

Experiment: Reuters-21587

Setup

- Top 10 categories of Reuters-21587 dataset
- ~12000 features after stemming and stopword removal
- Macro-averaged precision/recall break-even point



Experiment: WebKB

Setup

- 4 classes
- 9 training examples, 3957 test examples
- Precision/recall break-even point per class (and average)

	Bayes	SVM	TSVM
course	57.2	68.7	93.8
faculty	42.4	52.5	53.7
project	21.4	37.5	18.4
student	63.5	70.0	83.8
macro-average	46.1	57.2	62.4

Other Approaches

Optimization Methods for TSVM Objective

- Semi-definite Programming relaxation (convex) [Xu et al.]
- Gradient Descent in Primal [Chapelle/Zien]
- Concave Convex Procedure [Collobert et al.]

Other Objectives

- Manifolds and Graph Kernels [Belkin/Niyogi] [Chapelle et al.]
- Harmonic Functions and Gaussian Processes [Zhu et al.]
- Random Walks [Szummer/Jaakola]
- Graph Cuts [Blum/Chawla]
- Kernels from Generative Models [Jaakola/Haussler]

Special Structure of Problem

- Co-Training [Blum/Mitchell]
- Structured Output Prediction [Brefeld/Scheffer]
- Transductive Error Bounds
- Much more...

Self-Consistency and Stability

- Inductive Learner: L_{ind}
- Transductive Learner: L_{trans} (based on L_{ind})
- Assumption
 - If whole sample was labeled, then L_{ind} would learn accurate classifier.

Reasoning

- If assumption holds, then L_{ind} will have low leave-one-out error.
- If L_{trans} returns a labeling on which L_{ind} would have high leave-one-out error, it cannot be the correct labeling.

\rightarrow Construct prior of L_{trans} via leave-one-out error of L_{ind} .

- Margin wrt. test set bounds leave-one-out error of inductive SVM.
- Ridge Regression [Chapelle et al.]
- Graph-cuts [Blum/Chawla]

Redefining Margin

Primal:

$$egin{aligned} & \min_{oldsymbol{y}} & \frac{1}{2} oldsymbol{w}^T oldsymbol{w} \ & s.t. & orall i: y_i oldsymbol{w}^T oldsymbol{x} \geq 1 \ & orall i: L: y_i = 1/-1 \ & oldsymbol{y} \in \{+1,-1\} \end{aligned}$$

Dual:

min max
$$1^T \alpha - \frac{1}{2} \alpha^T Y A Y \alpha$$
 $y \quad \alpha \ge 0$ $s.t. \quad \forall i: Y_{ii} = y_i$ $\forall i \in L: y_i = 1/-1$ $y \in \{+1, -1\}$ $\alpha_1 = \ldots = \alpha_n$

Classification Rule / Margin:

$$h(x) = sign \left\{ \sum_{i=1}^{n} y_i X_i K(x, x_i) \right\}$$

$$m(x, y) = 1 - y \sum_{i=1}^{n} y_i X_i K(x, x_i)$$

Nearest Neighbor Rule

Simplified Dual:

 $\min_{m{y}} - m{y}^T\!\! A m{y}$

s.t.
$$\forall i \in L : y_i = 1/-1$$

 $\mathbf{y} \in \{+1, -1\}$

Connection to Graph Cuts [Blum/Chawla]

Simplified Dual:

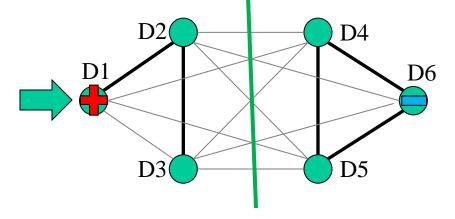
$$\min_{oldsymbol{y}} -oldsymbol{y}^T\!\!Aoldsymbol{y}$$
 $s.t.\ orall i\in L: y_i=1/-1$ $oldsymbol{y}\in\{+1,-1\}$

$$\min_{\mathbf{y}} \sum_{y_i \neq y_j} A_{ij} = \sum_{ij} A_{ij} (y_i - y_j)^2$$

$$s.t. \ \forall i \in L : y_i = 1/-1$$

$$\mathbf{y} \in \{+1, -1\}$$

		nuclear	physics	atom	pepper	basil	salt	and
+	D1	1						1
	D2	1	1	1				1
	D3			1				1
	D4				1	1		1
	D5				1		1	1
_	D6		·			1	1	1



→ Fast algorithms for computing cuts for sparse graphs (e.g. k-NN)

Connection to Harmonic Functions [Zhu/Ghahramani/Lafferty]

Graph Cut:

$$\min_{\boldsymbol{y}} \sum_{ij} A_{ij} (y_i - y_j)^2$$

$$s.t. \ \forall i \in L : y_i = 1/-1$$

$$\boldsymbol{y} \in \{+1, -1\}$$

Harmonic:

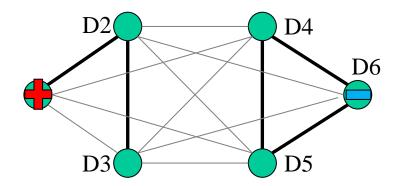
$$\min_{\boldsymbol{y}} \sum_{ij} A_{ij} (y_i - y_j)^2$$

$$s.t. \ \forall i \in L : y_i = 1/-1$$

$$\boldsymbol{y} \in [+1, -1]$$

Interpretations:

- Gaussian process
- Electric network
- Probability that random walk hits positively labeled node first
 - → Connection to [Szummer/Jaakkola]



→ Closed form solution and/or very efficient iterative methods

Connection to Normalized Cuts [Joachims]

Graph Cut:

$$\min_{\boldsymbol{y}} \sum_{ij} A_{ij} (y_i - y_j)^2$$

$$s.t. \ \forall i \in L : y_i = 1/-1$$

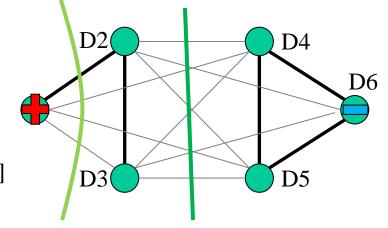
$$\boldsymbol{y} \in \{+1, -1\}$$

Normalized (Ratio) Cut:

$$\min_{y} \sum_{ij} A_{ij} (y_i - y_j)^2 / \sum_{ij} (y_i - y_j)^2
s.t. \ \forall i \in L : y_i = 1/-1
y \in \{+1, -1\}$$

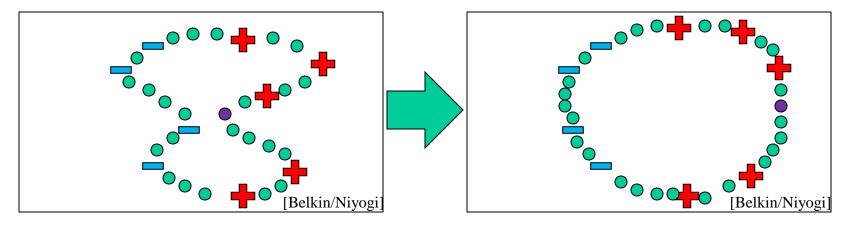
Interpretations:

- Minimize average weight of cut edge
- Spectral relaxation has efficient solution
 - →Normalized cuts [Shi/Malik]
- "Supervised" normalized cut
 - → Supervised clustering [Yu/Gross/Shi]



→ Efficient solution of spectral relaxation

Connection to Manifolds and Graph Kernels [Belkin/Niyogi] [Chapelle et al.]



Exploit Manifold Structure

- Smoothness criterion $\sum_{ij} A_{ij} (y_i y_j)^2 = y^T L y$ related to graph Laplacian L=D-A $_{ij}$
- Not Euclidian distance, but geodesic distance in local neighborhood graph
- Use eigenvectors $U\Lambda U^T=L$ of graph Laplacian L to
 - explicitly re-represent data [Roweis/Saul] [Tennenbaum et al.]
 - define a kernel (e.g. to use in inductive SVM) [Kondor/Lafferty]

Connection to Co-Training [Blum/Mitchell]

• Idea:

Exploit two sufficiently redundant representations

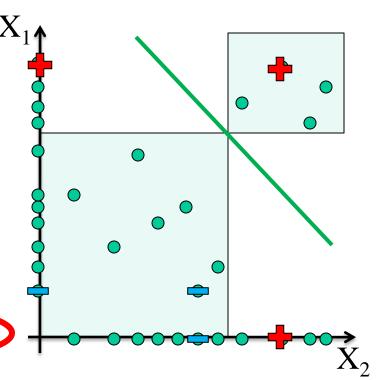
• Example:

- Learn threshold on X_1 / X_2
- → Co-training implies margin

• Experiment:

Error rate on WebKB "course"

	SVM	TSVM	B&M
page	21.6	4.6	12.9
link	18.5	8.9	12.4
co-train	20.3	4.3	5.0



Post Mortem

Why does Transductive Learning Work?

- Smoothness: labels change smoothly with structure of unlabeled data (clusters, manifold).
- Self-Consistency: if all examples were labeled, supervised learner has low leave-one-out error.

Transduction vs. Semi-supervised?

- Transduction = semi-supervised
- Discriminative vs. Generative?
 - No need for density estimate of P(X)
- Use in Practice?
 - Largest benefits for small training sets
 - Better mean, but (still) large variance
- How can we use ALL the (text) data on the web?