WebWatcher: A Tour Guide for the World Wide Web

Thorsten Joachims
Universitat Dortmund
Informatik-LS8
Baroper Str. 301
44221 Dortmund, Germany

Abstract

We explore the notion of a tour guide software
agent for assisting users browsing the World
Wide Web. A Web tour guide agent provides
assistance similar to that provided by a human
tour guide in a museum — it guides the user
along an appropriate path through the collec-
tion, based on its knowledge of the user’s in-
terests, of the location and relevance of var-
ious items in the collection, and of the way
in which others have interacted with the col-
lection in the past. This paper describes a
simple but operational tour guide, called Web-
Watcher, which has given over 5000 tours to
people browsing CMU’s School of Computer
Science Web pages. WebWatcher accompanies
users from page to page, suggests appropriate
hyperlinks, and learns from experience to im-
prove its advice-giving skills. We describe the
learning algorithms used by WebWatcher, ex-
perimental results showing their effectiveness,
and lessons learned from this case study in Web
tour guide agents.

1 Introduction

Browsing the World Wide Web is much like visiting a
museum. In a museum the visitor has general areas of
interest and wants to see relevant artifacts. But visi-
tors find it difficult to locate relevant material given that
they do not initially know the contents of the museum.
In many cases their initial interests are poorly defined,
becoming clear only after they begin to explore. In a
museum the user might rely on a tour guide who is fa-
miliar with the museum and how people interact with
it. The visitor could describe his or her initial inter-
ests to the tour guide, who could then accompany the
user, point out items of interest, and suggest which di-
rections to turn next. During the tour the visitor could
communicate with the guide, express interest in certain
artifacts, ask and answer questions as they explore, and
refine their interests.

People browsing collections of Web pages often be-
have like museum goers. For example, a visitor to

Dayne Freitag
Carnegie Mellon University
School of Computer Science

5000 Forbes Avenue
Pittsburgh, PA 15213, USA

Tom Mitchell
Carnegie Mellon University
School of Computer Science

5000 Forbes Avenue
Pittsburgh, PA 15213, USA

CMU’s Computer Science Web home page might have
a general interest in “experimental research on intel-
ligent agents.” However, with no specific knowledge
about the contents of the collection, the user may find
1t difficult to locate relevant information. Until they be-
come aware that CMU conducts significant research on
robotics, for example, they may not think to mention
“learning robots” when describing their general interest
in intelligent agents.

Here, we report research into software agents that act
as tour guides for the Web. In its most general form,
the metaphor of Web agent as tour guide is very broad,
suggesting systems that carry on general natural lan-
guage dialogs with their users, possess detailed knowl-
edge about the semantic content of the Web pages they
cover, and learn with experience. Here we describe a first
experiment with a more restricted, but operational, tour
guide. In particular, we describe WebWatcher [Arm-
strong et al., 1995, a system that accompanies the user
as he or she browses the Web. Like a museum tour
guide, WebWatcher interactively suggests where to go
next. The user can communicate with the system and
give feedback. WebWatcher acts as a learning appren-
tice [Mitchell et al., 1994], observing and learning from
its users’ actions. Over time WebWatcher learns to ac-
quire greater expertise for the parts of the World Wide
Web that it has visited in the past, and for the types of
topics in which previous visitors have had an interest.

WebWatcher differs in several key respects from
keyword-based search engines such as Lycos and Al-
tavista. First, such search engines require that the
user describe their interest in terms of specific words
that match those in the target Web page. In contrast,
WebWatcher can learn that a term such as “machine
learning” matches a hyperlink such as “neural networks”
or “Avrim Blum,” even though these phrases share no
words in common. Furthermore, current search engines
do not take into account that documents are designed as
hypertext. In many cases only a sequence of pages and
the knowledge about how they relate to each other can
satisfy the user’s information need.

In the following we present the design of WebWatcher,
as well as experimental results obtained from over 5000
tours given by WebWatcher to various visitors on the

File Edit View Go Bookmarks Options Directory Window Helpl

[3

WedWeatcher Conmmends
[Exit: Goal Reached | Exit: Goal Not Found | Your Comments | Help]
[How followed each link? | Show me similar pages | Email me if this
page changes]

1link suggested. Click HERE to see it.

in Universily

Welcome from the Dean

Index of people and [F7TjprojectsfF]

Departments
Computer Science Department
Human-C omputer Interacton [nstitute

Lengnage Technologies Institute
(and Center for Machine Translaton;

The Robotics Institute
Information Technology Center

Academic Programs
course lists
PhDin Computer Science (applicaton Ph.D: in Langn and Information Technol 7
= " =

Figure 1: The Front-Door page with WebWatcher’s ad-
ditions.

Web. We describe how WebWatcher learns to improve
the quality of its advice, and present experimental results
comparing different learning methods. Finally, we sum-
marize the lessons and perspectives gained from these
first experiments with a tour guide agent for the Web.

2 Trace of WebWatcher

WebWatcher was in operation from August, 1995, to
February, 1997. A typical WebWatcher tour proceeded
as follows. We enter the CMU School of Computer Sci-
ence Web at the front door page. On this page an in-
stance of WebWatcher can be invoked by clicking on the
hyperlink “The WebWatcher Tour Guide”. Clicking on
this hyperlink leads us to a page where we are asked for a
short description of our current interest. In this example,
we enter the phrase “intelligent agents” as our interest.
WebWatcher now returns us to the initial page, prepared
to guide our tour (figure 1). We are no longer browsing
alone; but will be accompanied by WebWatcher on any
sequence of hyperlinks we follow from this point forward.

We can tell that WebWatcher accompanies us from
the additions it makes to the original page. A page aug-
mented with WebWatcher’s additions is shown in figure
1. Among others they include:

o A list of WebWatcher Commands is inserted above
the original page. The user can invoke these com-

mands to communicate with WebWatcher as he
browses from page to page.

e Selected hyperlinks from the original page have now
been highlighted by WebWatcher, to suggest di-
rections relevant to our browsing interests. Web-
Watcher highlights these hyperlinks by inserting

eyeball icons (i) around the hyperlink, as shown
in the “projects” link in figure 1 (recall in this ex-
ample the user expressed an interest in “intelligent
agents”). The advice WebWatcher provides in this
fashion is based on knowledge learned from previous
tours.

If we follow WebWatcher’s suggestion in figure 1, we
reach a page containing a long list of research project
pages. WebWatcher again inserts the command list on
top of the page and suggests three hyperlinks it judges
relevant to our interest in “intelligent agents.”

In general, the user may click on any hyperlink, recom-
mended or not. Each time the user selects a hyperlink,
WebWatcher accompanies the user to the next page, and
logs this hyperlink selection as a training example for
learning to improve future advice.

In addition to highlighting hyperlinks WebWatcher
also provides other forms of assistance. In particular, it
provides a keyword search using a variant of the Lycos
search engine applied to the set of pages previously vis-
ited by WebWatcher. It also provides a user command
“Show me similar pages” in the command list, which
causes WebWatcher to display a list of pages which are
similar based on a metric derived from hypertext struc-
ture [Joachims et al., 1995]. Clicking on the command
“how many followed each link?” asks WebWatcher to
display for each hyperlink the number of previous visi-
tors who took that link. The command “Email me if this
page changes” tells WebWatcher to periodically monitor
the current page and send the user email if it changes.

WebWatcher accompanies the user along any hyper-
link anywhere on the World Wide Web. To end the tour,
the user clicks on one of two options in the command list:
“Exit: Goal reached” or “Exit: Goal not found.” This
exit provides the user with a way of giving final feedback

to WebWatcher.

3 Accompanying the User

WebWatcher is implemented as a server on a separate
workstation on the network and acts much like a proxy.
Before returning a page to the user it makes three mod-
ifications:

1. The WebWatcher command list is added to the top
of the page.

2. Each hyperlink URL in the original page is replaced
by a new URL that points back to the WebWatcher

Server.

3. If WebWatcher finds that any of the hyperlinks on
this page are strongly recommended by its search
control knowledge, then it highlights the most
promising links in order to suggest them to the user.

oo |Pe
Request + Menubar

+ Advice

+ Replaced URLs

World Wide Web

Figure 2: WebWatcher is an interface agent between the
user and the World Wide Web.

While it waits for the user’s next step, it prefetches
any Web pages it has just recommended to the user to
minimize network delays. Figure 2 depicts one cycle of
user interaction. When the user clicks on a new hyper-
link, WebWatcher updates the log for this search, re-
trieves the page (unless it has already been prefetched),
performs similar substitutions, and returns the copy to
the user. This process continues until the user elects to
dismiss the agent.

4 Learning in WebWatcher

What is the form of the knowledge required by Web-
Watcher? In general, its task is to suggest an appropri-
ate link given an interest and Web page. In other words,
it requires knowledge of the following target function:

LinkQuality : Page x Interest x Link — [0, 1]

The value of LinkQuality is interpreted as the prob-
ability that a user will select Link given the current
Page and Interest. In the following we present three
approaches to learning this target function from expe-
rience. The first approach uses previously given tours
as a source of information to augment the internal rep-
resentation of each selected hyperlink. The second ap-
proach is based on reinforcement learning. The idea is
to find tours through the Web so that the amount of
relevant information encountered over the trajectory is
maximized. The third approach is the combined method
that includes both of the first two approaches.

4.1 Learning from Previous Tours

In the first approach, learning 1s accomplished by anno-
tating each hyperlink with the interests of the users who
took this hyperlink on previous tours. Thus, whenever a
user follows a hyperlink the description of this hyperlink
is augmented by adding the keywords the user typed in
at the beginning of the tour. The initial description of
a hyperlink is the underlined text. Figure 3 illustrates
the keywords accumulated by hyperlinks, and the way
in which these are used to influence subsequent advice.

Index of people and projects

Computer Science Department The Robotics Institute
Human-Computer Interaction Institute Information Technology Center

Language Technology Institute
{and Center for Machine Translation}

welcome from the dean
N

admission information
S —
graduate studies
S —

projects

speech recognition
S —

machine learning
—

studying at cmu interface agents

‘ intelligent agents ‘

Figure 3: Here the interest of a new user in “intelligent
agents” matches the “projects” hyperlink better than
the “Welcome from the Dean” hyperlink, because of the
keywords accumulated by this hyperlink during previous
tours.

To suggest hyperlinks during a tour WebWatcher com-
pares the current user’s interest with the descriptions of
all hyperlinks on the current page. WebWatcher sug-
gests those hyperlinks which have a description suffi-
ciently similar to the user’s interest.

The metric used to compute similarity between a
user’s stated interest and a hyperlink description is based
on a technique from information retrieval [Salton, 1991].
Interests and hyperlink descriptions are represented by
very high-dimensional feature vectors, each dimension
representing a particular word in the English language.
The elements (called word-weights) of a vector are cal-
culated using the TFIDF heuristic [Salton, 1991]. Based
on this vector representation similarity is calculated as
the cosine between vectors.

The algorithm WebWatcher uses to suggest hyper-
links considers all hyperlinks on the current page. For
each hyperlink, the list of associated keywords (includ-
ing the original underlined words) is used to calculate
its similarity to the current user’s interest. The value
of LinkQuality for each hyperlink is estimated to be the
average similarity of the k (usually 5) highest ranked key-
word sets associated with the hyperlink. A hyperlink 1s
suggested if its value for LinkQuality is above a thresh-
old. The maximum number of hyperlinks suggested on
a page 1s three.

4.2 Learning from Hypertext Structure

The previous section describes a learning method that
augments a given hyperlink with the stated interests of
earlier users who selected 1t. In this section we describe
a second learning method that augments a given hyper-
link using words encountered in pages downstream of it.
This approach is based on reinforcement learning. The

0.9

Figure 4: Example state space.

objective is to find paths through the Web which maxi-
mize the amount of relevant information encountered.

Reinforcement Learning

Reinforcement learning allows agents to learn control
strategies that select optimal actions in certain settings.
Consider an agent navigating from state to state by per-
forming actions. At each state s the agent receives a
certain reward R(s). The goodness of an action a can
be expressed in terms of an evaluation function Q(s,a),
defined for all possible state-action pairs. The value of
Q(s, a) is the discounted sum of future rewards that will
be obtained if the agent performs action a in state s and
subsequently chooses optimal actions. If the agent can
learn this function, then it will know how to act in any
state. More precisely,

oQ

Q(st,a) = Zi:o ' Rist41+41)

where s; is the state the agent is in at time ¢, and where
~ 1s a discount factor 0 < 4 < 1 that determines how
severely to discount the value of rewards received further
into the future. Under certain conditions, the Q func-
tion can be iteratively approximated by updating the
estin]late for Q(s, a) repeatedly as follows (see [Watkins,
1989]):

max
a’Eactions_in_s’

Qny1(s,a) = R(s") +v [Qn(s',ad")]

s’ 1s the state resulting from performing action a in state
s. Once Q(s,a) is known, the optimal control strategy
for the agent is to repeatedly pick the action a that max-
imizes Q(s,a) for its current state s.

Figure 4 gives an example. Boxes represent possible
states of the agent. The edges represent actions that
bring the agent from one state to another. The edges
are annotated with values of the function Q(s, a). In the
rightmost state the agent receives a reward of 1. The
reward is 0 in all other states. If the agent always follows
the action with the highest @ value, it will get to the
reward state in the smallest number of steps and thus
maximize the discounted reward it receives.

Reinforcement Learning and Hypertext

Imagine a Web agent looking for pages on which the word
“intelligent” occurs. For this agent, states correspond to
Web pages, and actions correspond to hyperlinks. In this
case, we define the reward Rinteiiigent(s) for a particular
page s to be the TFIDF value of “intelligent” for s. The
agent will then learn a Qinteurigent(s, a) function whose
value for page s and hyperlink a is the sum of discounted
TFIDF values of “intelligent” over the optimal tour be-
ginning with a. It can then use this @ function to choose
the best link at each step in the tour.

WebWatcher uses a separate reward function Ry (s)
and learns a distinct @y (s, @) function for every word
w. At runtime the system recommends hyperlinks for
which the sum of the Qy (s, @) for the words in the user’s
interest description is highest. An additional reward is
given if the interest matches the underlined text of the
hyperlink.

Because WebWatcher cannot expect that users will al-
ways stick to pages it has already seen, a core question
in implementing this approach is how to learn a general
approximation for each of the Q-functions Q. (s, a) that
applies even to unseen states (pages) and actions (hyper-
links). We chose a distance-weighted 3-nearest neighbor
function approximator [Mitchell, 1997] for this purpose,
because of the many features needed to describe pages
and hyperlinks, and because of certain theoretical ad-
vantages [Gordon, 1995). Each hyperlink a is described
by the TFIDF vector representation of the underlined
anchor text, each page s analogously by its title. We de-
fine the similarity between the hyperlink a; on page s;
and the hyperlink as on page s to be the distance be-
tween a1 and as, plus (heuristically) twice the distance
between s; and so. The distance between two vectors 1s
defined to be the cosine of the angle between the vectors,
in keeping with the standard similarity measure used in
information retrieval.

4.3 Experimental Setup

The experiments presented in this section were con-
ducted using 1777 of the 5822 traces starting at the SCS-
FrontDoor page WebWatcher collected between August
2, 1995, and March 4, 1996. We used only those tours
where the user typed in an interest and where the tour
was at least four steps long. Five different test-training
splits were used with the pages and hyperlinks from 70%
of the traces used for training.

In addition to the reinforcement learning approach RL
and the learning method ANNOTATE from section 4.1,
the results for four other methods are presented. RAN-
DOM suggests hyperlinks at random from the current
page. POPULARITY suggests those hyperlinks which
have been followed most frequently in the past, ignoring
information about the current user’s interest. MATCH
suggests hyperlinks according to the TFIDF-cosine sim-
ilarity between their underlined text and the user’s in-
terest. Finally, the COMBINE method combines the
predictions of RL, POPULARITY, ANNOTATE, and

Accuracy
Random 31.3% (.9)
Popularity | 41.9% (.4)
Match 40.5% (.6)
Annotate | 42.2% (.7)
RL 44.6% (.5)

| Combine [48.9% (.3) |

Figure 5: Results averaged over five different test train-
ing splits (with one standard error).

MATCH using logistic regression. 10% of the available
training data is used for regression.

4.4 Experimental Results

The results in figure 5 provide a comparison of the learn-
ing methods. For each example in the test set each
learner was allowed to choose three hyperlinks from the
corresponding page. Accuracy measures the percentage
of examples for which the user followed one of these cho-
sen hyperlinks. We required each learning algorithm to
make a prediction regardless of how confident it was.

The method WebWatcher used while accessible to the
public was Annotate. The accuracy of 42.2% in the of-
fline experiment here approximately matches the frac-
tion of times (43.9%) users followed WebWatcher’s ad-
vice during actual use of the system.

Reinforcement learning performs significantly better
than the other basic methods. Nevertheless the com-
bination of all methods achieves the highest accuracy,
outperforming each of the individual methods. Our con-
jecture 1s that this is due to the diversity of the methods
and sources of information that are combined. Popu-
larity uses frequency information derived from user be-
havior on a particular page, Match uses the underlined
text in hyperlinks, Annotate uses the interest descrip-
tions from previous user traces, and RL makes use of
hypertext structure that is downstream of the hyperlink
in question.

4.5 Comparison with Human Experts

To get a better feel for the nature of the task of sug-
gesting hyperlinks and to evaluate WebWatcher’s perfor-
mance, we conducted an experiment in which we asked
humans to perform WebWatcher’s task. To make the ex-
periment more tractable we focused on one page, namely
an earlier version of the SCS-Front-Door page shown in
figure 1. From the 408 training examples available for
this page we took 8 random subsets of 15 examples and
presented these to eight people who were already well-
informed about this page and its locale. For each ex-
ample, they were given the stated interest of the user,
then asked to suggest the 3 hyperlinks the user was most
likely to follow out of the 18 hyperlinks on this page.
As figure 6 summarizes, humans achieved an accuracy
of 47.5% in predicting which hyperlink the user would
follow. The learning method Annotate achieved an ac-
curacy of 42.9% under the same conditions. The 22.4%

Accuracy
Random 22.4%
Annotate 42.9%
Human 47.5%

Figure 6: A comparison to human performance on the
SCS-Front-Door page.

for random prediction again provides a baseline. These
results suggest that predicting which hyperlink the user
is going to follow 1s a fairly difficult task in a general set-
ting. In comparison to human performance the learning
approach does reasonably well.

5 Related Work

Letizia [Lieberman, 1995] is similar to WebWatcher in
the sense that the system accompanies the user while
browsing. One difference is that Letizia is located on a
single user’s machine and learns only his or her current
interest. By doing lookahead search Letizia can recom-
mend nearby pages.

Syskill and Webert [Pazzani et al., 1996] offers a
more restricted way of browsing than WebWatcher and
Letizia. Starting from a manually constructed index
page for a particular topic, the user can rate hyperlinks
off this page. The system uses the ratings to learn a user
specific topic profile that can be used to suggest unex-
plored hyperlinks on the page. Syskill and Webert can
also use search engines like LYCOS to retrieve pages by
turning the topic profile into a query.

Lira [Balabanovic and Shoham, 1995] works in an of-
fline setting. A general model of one user’s interest is
learned by asking the user to rate pages. Lira uses the
model to browse the Web offline and returns a set of
pages that match the user’s interest.

6 Summary and Future Research

WebWatcher provides one case study of a tour guide
agent for the World Wide Web. By “tour guide agent”
we mean any agent that accompanies users from page
to page, providing assistance based on a partial under-
standing of that user’s interests and of the content of the
Web pages. During its 18 months of operation, Web-
Watcher served thousands of people browsing CMU’s
School of Computer Science Web pages. The system
has the following properties:

e WebWatcher provides several types of assistance,
but most importantly highlights interesting hyper-
links as it accompanies the user.

e WebWatcher learns from experience. We found a
multi-strategy approach to be the most effective
learning method.

e WebWatcher runs as a centralized server so that it
can assist any Web user running any type of Web
browser as well as combine training data from thou-
sands of different users.

Our experience with WebWatcher led us to believe that
self-improving tour guide agents will play an important
role on the Web in the future. WebWatcher demon-
strates that it is possible for such an agent to provide
helpful advice to many users, and that 1t is possible to
automatically learn from the thousands of users with
whom 1t interacts. Given that popular Web sites are
typically visited by many thousands of users, and that
the content of the Web changes frequently, it appears
that machine learning will play a crucial role in future
tour guide agents.

Our experience with WebWatcher has also shown that
despite its ability to help some users, its highlighted hy-
perlinks match those followed by users in only 48% of
all cases. Interestingly, when we assigned expert hu-
mans the same task, they could do no better. Examining
many specific tours given by WebWatcher, we find the
following partial explanation for this level of accuracy.
Users tend to have a fairly short attention span and
are distracted from their stated interest. Furthermore
there is great diversity in the interests of users browsing
CMU’s SCS Front Door so that even after thousands of
tours it 1s not uncommon for the next user to express
an interest that WebWatcher has not yet encountered.
Together, these two factors suggest that WebWatcher
might achieve higher accuracy if the Web locale it had
to cover had a narrower, more focused scope.

More generally, our experience with WebWatcher sug-
gests a number of topics for future research:

e Personalized WebWatcher. Whereas WebWatcher
learns to specialize to a specific Web locale, one
could instead develop tour guide agents that learn to
specialize to a particular user. Such an agent could
learn a model of the longer-term interests of users
by observing which pages they do and do not visit.
We have recently begun experiments with such a

personalized WebWatcher [Mladenic, 1996].

e Combining user-specific and Web locale-specific
learning. At the same time WebWatcher learns
a model of one particular user, it could retain its
capability to annotate hyperlinks based on tours
given to many users. In this context, one could ex-
plore a variety of methods for combining the benefits
of single-user modeling and learning simultaneously
from/about multiple users.

o Richer dialogs with users. One major shortcoming
of the current WebWatcher is that it allows the user
only to express a few keywords, and only at the
beginning of the tour. A more flexible approach
would involve an ongoing dialog with the user, much
more like that a museum visitor might have with a
human guide.

e New machine learning algorithms for classifying
hyperlinks. The learning methods used by Web-
Watcher succeed in improving its performance over
time. However, a large space of possible learning

methods for this problem remains unexplored, i.e.
the combination of linguistic analysis with the sta-
tistical techniques described here.

e Intelligent distributed hyperlinks. WebWatcher
learns by associating new information with hyper-
links based on its experience. Note this learning
could be performed in a much more distributed fash-
ion, with each hyperlink separately building up its
own model of itself and making recommendations
to the user.

Acknowledgements

This research is supported by a Rotary International fel-
lowship grant, an NSF graduate fellowship, and by Arpa
under grant number F33615-93-1-1330.

References

[Armstrong et al., 1995] R. Armstrong, D. Freitag,
T. Joachims, and T. Mitchell. Webwatcher: A learn-
ing apprentice for the world wide web. In AAAT Spring
Symposium on Information Gathering from Heteroge-
neous, Distributed Environments, March 1995.

[Balabanovic and Shoham, 1995] M. Balabanovic and
Y. Shoham. Learning information retrieval agents:
Experiments with automated web browsing. In AAAT
Spring Symposium on Information Gathering from
Heterogeneous, Distributed Environments, 1995.

[Gordon, 1995] G. Gordon. Stable function approxima-
tion in dynamic programming. In International Con-
ference on Machine Learning, 1995.

[Joachims et al., 1995] T. Joachims, T. Mitchell, D. Fre-
itag, and R. Armstrong. Webwatcher: Machine learn-
ing and hypertext. In K. Morik and J. Herrmann,
editors, GI Fachgruppentreffen Maschinelles Lernen.
University of Dortmund, August 1995.

[Lieberman, 1995] H. Lieberman. Letizia: An agent that
assists web browsing. In International Joint Confer-
ence on Artificial Intelligence, Montreal, August 1995.

[Mitchell et al., 1994] T. Mitchell, R. Caruana, D. Fre-
itag, J. McDermott, and D. Zabowski. Experience
with a learning personal assistent. Communications
of the ACM, 37(7):81-91, July 1994.

[Mitchell, 1997] T. Mitchell. Machine
McGraw-Hill, 1997.

[Mladenic, 1996] D. Mladenic. Personal webwatcher:
Implementation and design. Technical report, J. Ste-
fan Institute, Ljubljana, Slovenia, 1996.

[Pazzani et al., 1996] M. Pazzani, J. Muramatsu, and
D. Billsus. Syskill & webert: Identifying interesting
web sites. In AAAI Conference, Portland, 1996.

[Salton, 1991] G. Salton. Developments in automatic
text retrieval. Science, 253:974-979, 1991.

[Watkins, 1989] C. Watkins. Learning from delayed re-

wards. Technical report, King’s College, Cambridge,
England, 1989.

Learning.

