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Abstract

This paper presents a learning theoreti-
cal analysis of correlation clustering (Bansal
et al., 2002). In particular, we give bounds
on the error with which correlation cluster-
ing recovers the correct partition in a planted
partition model (Condon & Karp, 2001; Mc-
Sherry, 2001). Using these bounds, we ana-
lyze how the accuracy of correlation cluster-
ing scales with the number of clusters and the
sparsity of the graph. We also propose a sta-
tistical test that analyzes the significance of
the clustering found by correlation clustering.

1. Introduction

While we have gained a detailed learning theoreti-
cal understanding of supervised learning over the last
decades, our understanding of unsupervised clustering
is still rather limited. For example, how much data
is necessary so that a clustering algorithm outputs a
reliable clustering? How does the amount of data de-
pend on the distribution of the data? Is the particular
clustering produced by some algorithm significant?

This paper addresses these questions for a particular
graph-based clustering algorithm, namely correlation
clustering (Bansal et al., 2002). Correlation clustering
is a particularly attractive clustering method, since its
solution can be approximated efficiently (see e.g. (De-
maine & Immorlica, 2003; Swamy, 2004)) and it auto-
matically selects the number of clusters. While Bansal
et al. (2004) briefly discuss the behavior of their al-
gorithm under noise in the data, no learning theoretic
analysis exists yet. To conduct the analysis, we pro-
pose a simple probabilistic model over graphs that ex-
tends the planted partition model (Condon & Karp,
2001; McSherry, 2001). An advantage of this model
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is that its simplicity allows a concise analysis, while
providing a starting point for exploring more complex
models.

While a substantial amount of theoretical work on
clustering algorithms exists, much of this work is
concerned primarily with computational aspects (e.g.
(Dasgupta, 1999; McSherry, 2001)). Probably the
most general learning theoretic model of clustering to
date is “Empirical Risk Approximation” (Buhmann,
1998; Buhmann & Held, 1999), which applies to clus-
tering algorithms that optimize an objective function.
Buhmann (1998) uses uniform convergence arguments
to bound the difference between the objective value a
clustering achieves on the training data and its objec-
tive over the data distribution. Ben-David follows this
approach to derive finite sample bounds for k-median
clustering (Ben-David, 2004). The k-means or vec-
tor quantization problem is probably the best studied
clustering problem. Among other results, statistical
consistency was proven by Pollard (Pollard, 1981), and
lower (Bartlett et al., 1998) and upper bounds (Linder
et al., 1994) on the quantization error are know. Our
work is substantially different since it considers non-
metric clustering problems where the data comes in
the form of graphs. Graph-based clustering problems
are ubiquitous in WWW search and social network
analysis (e.g. (Kleinberg, 1999)). Instead of limit-
ing our analysis to investigating statistical consistency,
like the work of von Luxburg et al. (2004) for spectral
clustering, we rather use a more restrictive model in
which we can prove finite sample bounds for correla-
tion clustering.

Our analysis makes three contribution. First, we de-
fine a model in which we derive finite-sample error
bounds for correlation clustering. Second, we study
the asymptotic behavior of correlation clustering with
respect to the density of the graph and the scaling of
cluster sizes. And finally, we propose a statistical test
for evaluating the significance of a clustering.
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Figure 1. Example of correlation clustering on graph with 6 vertices. The graph and it’s weight matrix W are depicted
on the left. Solid edges indicate a weight of +1, dotted edges a weight of −1. The correlation clustering is depicted on
the right.

2. Correlation Clustering

The correlation clustering of an n vertex weighted
graph with edge weights Wij ∈ < is the partition of
the vertices that minimizes the sum of positive weights
that are cut minus the negative weights that are not
cut. An example of an (undirected) graph with six
vertices is given in Figure 1. In this example, the
matrix of edge weights W contains only three possi-
ble values, namely −1, 0, and +1. The correlation
clustering of W is depicted on the right-hand side of
Figure 1. The clustering contains one cluster contain-
ing vertices 1,2,3, and 4 and another cluster containing
vertices 5 and 6. This clustering cuts 2 (directed) edges
with weight +1, while it fails to cut 2 (directed) edges
with weight −1. This gives this clustering a score of
1 ∗ 2 − (−1) ∗ 2 = 4, which optimizes the objective
function of correlation clustering.

More formally, the correlation clustering Ŝ of a graph
with edge weights W is given by the solution Ŷ of
the following integer program (Demaine & Immorlica,
2003). The number k of clusters is not fixed by the
user, but determined as part of the clustering process.
The edge weights Wij enter the optimization problem
as follows. W+ is equal to adjacency matrix W , ex-
cept that all negative edge weights are replaced by 0.
Similarly, W− is equal to W , except that all positive
edge weights are replaced by 0. The optimization is
over the n×n matrix Y with elements Yij ∈ {0, 1}. A
value of 1 for Yij indicates that objects xi and xj are
in the same cluster. A value of 0 indicates that they
are in different clusters.

min
Y

n∑
i=1

n∑
j=1

[
(1− Yij)W+

ij − YijW
−
ij

]
(1)

subject to ∀i : Yii = 1 (2)
∀i, j : Yij = Yji (3)
∀i, j, k : Yij + Yjk ≤ Yik + 1 (4)
∀i, j : Yij ∈ {0, 1} (5)

We call Y a cluster indicator matrix. The constraints

of the optimization problem directly encode the three
conditions in the definition of an equivalence relation,
namely reflexivity, symmetry, and transitivity. This
means that any feasible Y — and therefore also the
solution Ŷ — directly corresponds to an equivalence
relation and it is straightforward to derive a clustering
from the solution Ŷ . We denote the clustering that
corresponds to an indicator matrix Y with S(Y ). Vice
versa, we denote with Y (S) the cluster indicator ma-
trix induced by clustering S on X. Finally, we define
the cost of a matrix Y

costW (Y ) =
n∑

i=1

n∑
j=1

[
(1− Yij)W+

ij − YijW
−
ij

]
(6)

as the value of the objective function for that cluster-
ing. For simplicity of notation, we assume that diago-
nal entries of W are always non-negative, i.e. Wii ≥ 0.

Note that the formulation of the optimization prob-
lem can be simplified. In particular, the reflexivity
constraints and the associated variables Yii can be
dropped. Similarly, one can eliminate the symmetry
constraints by unifying their variables. While the so-
lution of the optimization problem is known to be NP-
complete (Bansal et al., 2002), there are effective ap-
proximation algorithms for this problem (e.g. (Bansal
et al., 2002; Demaine & Immorlica, 2003; Swamy,
2004)).

3. Generalized Planted Partition Model

In this section we define a probabilistic data model
similar to the one in (Condon & Karp, 2001; McSherry,
2001). For data generated according to this model, we
will derive results that describe how accurately corre-
lation clustering recovers the correct cluster structure.

In our model we assume that there is an arbitrary
“true” partition S∗ = {S∗

1 , ..., S∗
k∗} of the vertices X

(i.e. S∗
1 ∪ ...∪S∗

k = X and S∗
i ∩S∗

j = ∅). Unlike in the
model of Condon and Karp (2001), the number of clus-
ters k∗ and the size of each cluster are arbitrary and
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Figure 2. Illustration of planted partition model and the inference process.

unknown to the clustering algorithm. To this partition
S∗ corresponds a probability distribution PS∗(W ) over
edge weights. We assume that PS∗(W ) is the process
that generates the data we want to cluster. The goal of
the clustering algorithm is to recover the true partition
S∗ underlying the data generating process PS∗(W )
from a single realization of edge weights W . The class
of distributions PS∗(W ) we consider is defined as fol-
lows.

Definition 1 (Gen. Planted Partition Model)
In a graph with n edges, the edge weights are generated
by a distribution

PS∗(W |M,a, b) =
n∏

i=1

n∏
j=1

PS∗(Wij |Mij , a, b) (7)

so that each element Wij of W is a bounded indepen-
dent random variable in the interval [a, b] with mean
Mij. Each PS∗(Wij |Mij , a, b) is constrained by the
true partitioning S∗ as follows. If Y (S∗)ij = 1 (ver-
tices i and j are in the same cluster), the mean Mij of
Wij must fulfill the constraint that Mij ≥ µ+ > 0. If
Y (S∗)ij = 0 (vertices i and j are in different clusters),
the mean Mij of Wij must fulfill Mij ≤ µ− < 0.

One can think of PS∗(W |M,a, b) (or PS∗(W ) for short)
as generating edge weights that are a noisy representa-
tion of the underlying true partition S∗. Figure 2 gives
an example of a true partition S∗, how its structure is
reflected in the matrix of means M , and how a partic-
ular matrix of edge weights W is drawn from PS∗(W ).
The matrix of means M controls the amount of noise1

and we summarize M using the two parameters µ+

and µ−. µ+ is a lower bound on the mean edge weight
between any two vertices that are in the same cluster
of S∗, while µ− is an upper bound on the mean edge
weight between any two vertices in different clusters.

if Y (S∗)ij = 1 (same cluster): E(Wij) ≥ µ+ > 0

1A natural and straightforward extension is to allow a
small random subset of edges to violate their constraints
on the mean.

if Y (S∗)ij = 0 (different cluster): E(Wij) ≤ µ− < 0

In the example in Figure 2, µ+ is 0.2 and µ− is −0.3.
Note that the model requires that the mean weight
of between cluster edges be less than zero, and that
the mean weight of within cluster edges be greater
than zero. In addition, it requires that all weights
are bounded2, i.e. ∀i, j : a ≤ Wij ≤ b.

This class of distributions PS∗(W ) can be used to
model a variety of clustering applications. Here are
three examples:

Pair-Wise Classification This example is the appli-
cation Bansal et al. (2002) use to motivate cor-
relation clustering. Edge weights Wij are derived
from classifications of pairs as e.g. in noun-phrase
coreference resolution (Ng & Cardie, 2002). For
each pair of objects, a classification rule makes
an independent judgment of whether two vertices
should be in the same cluster or not. The edge
weight is derived from the confidence in the judg-
ment.

Citation Network Analysis Edge weights repre-
sent citations in a network of bibliographic ref-
erences. Each citation edge receives a weight of
1, non-present citations receive a negative weight
w−. We will discuss the value of w− in Section 4.2.
The matrix of means M reflects the probabilities
with which documents cite each other dependent
on whether they are in the same cluster or not.

Co-Clustering The co-clustering model (Dhillon,
2001), originally proposed for text, simul-
tanously clusters the rows and the columns of a
term/document matrix. This leads to a bipartite
graph model with terms and documents being two
sets of vertices. An edge of weight Wij = 1 is
present in the graph, if term i occurs in docu-
ment j, it is equal to some negative value w− if

2Alternatively, we could assume that all variances are
bounded.
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the word does not occur. Weights between terms
and between documents are zero.

We will discuss more detailed results for query cluster-
ing in search engines and citation network analysis in
Sections 4.2 and 5 to further illustrate the model.

4. Analysing the Error of Correlation
Clustering

In this section, we analyze how well correlation clus-
tering can reconstruct the true partition S∗ based on
a weight matrix W drawn from a probability distri-
bution PS∗(W ) that conforms with our generalized
planted partition model. Figure 2 illustrates the sta-
tistical model in which we evaluate correlation clus-
tering. In this model, correlation clustering is applied
to the weight matrix W generated from PS∗(W ). The
resulting cluster indicator matrix Ŷ and the partition
Ŝ it induces are then compared against the true clus-
tering S∗. We measure the error of Ŝ with respect to
S∗ using the following pair-wise loss function.

d(Ŝ, S∗) = ||Y (Ŝ)− Y (S∗)||2F (8)

Here ||.||F denotes the Frobenius norm. Intuitively,
d(., .) measures the distance between two clusterings
as the number of elements that are different in the
corresponding cluster indicator matrices. In the ex-
ample in Figure 2, this difference is depicted as the
shaded region in the right-most panel and has value
d(Ŝ, S∗) = 10 + 8 = 18.

In the following, we will first derive upper bounds on
the error d(Ŝ, S∗) of correlation clustering with respect
to the number of vertices n and the values of µ+ and
µ−. After deriving the general results, we will apply
them to the example settings mentioned above. Fi-
nally, we will discuss the asymptotic behavior of cor-
relation clustering in our model.

4.1. Error Bound for Finite Samples

In our Planted Partition Model there is a true partition
S∗ of the given set of vertices X. Associated with the
partition S∗ is a probability distribution PS∗(W ) of
edge weights so that the mean of each within cluster
edge exceeds µ+ > 0, and so that the mean of each
between cluster edge is less than µ− < 0.

Our argument is structured as follows. First, given two
partitions S and S∗ with distance d(S, S∗), we bound
the probability that a weight matrix W drawn from
PS∗(W ) has a lower cost for partition S than for the
true partition S∗, i.e. costW (Y (S)) ≤ costW (Y (S∗)).
In a second step, we will bound the probability that

a weight matrix W drawn from PS∗(W ) has a cost
lower than the true partition for any partition S with
d(S, S∗) ≥ δ, i.e. the probability that ∃S : d(S, S∗) ≥
δ ∧ costW (Y (S)) ≤ costW (Y (S∗)). This bounds the
probability of drawing a W so that correlation cluster-
ing returns a partition Ŝ which has an error d(Ŝ, S∗)
greater than δ.

There are two components contributing to d(Ŝ, S∗).
Let d+(S, S∗) = δ+ be the number of vertex pairs that
are clustered together in S∗ but not in S. Similarly, let
d−(S, S∗) = δ− be the number of vertex pairs that are
clustered together in S but not in S∗. This means that
d(S, S∗) = δ+ + δ− = δ. Based on the magnitude of
these two types of errors, we can bound the probability
of the model generating a W for which the incorrect
partition S has a lower cost than the true partition S∗.

Lemma 1 Given two partitions S∗ and S with
d+(S, S∗) = δ+ and d−(S, S∗) = δ−, it holds for
W drawn from the generalized planted partition model
PS∗(W ) with µ− < 0 < µ+ and a ≤ Wij ≤ b that

P(costW(Y(S))≤costW(Y(S∗))|S,S∗,δ+,δ−)≤ e
−2

(δ+µ+−δ−µ−)2

(δ++δ−)(b−a)2

for any δ+ + δ− ∈ [0, n(n− 1)].

Proof We can compute the difference of costs
costW (Y (S))−costW (Y (S∗)) of Y (S) and Y (S∗) with
respect to W as

n∑
i=1

n∑
j=1

[
(1−Yij)W+

ij −YijW
−
ij

]
−

n∑
i=1

n∑
j=1

[
(1−Y∗

ij)W
+
ij −Y∗

ijW
−
ij

]
=

∑
{(i,j):Yij 6=Y∗

ij
}

[
(1−Yij)W+

ij −YijW
−
ij

]
−
∑

{(i,j):Yij 6=Y∗
ij
}

[
(1−Y∗

ij )W+
ij −Y∗

ij W−
ij

]
=

∑
{(i,j):Yij 6=Y ∗

ij
}

[YijWij ] −
∑

{(i,j):Yij 6=Y ∗
ij
}

[
Y ∗

ijWij

]
More precisely, if the distance between two clusterings
S and S∗ is d+(S, S∗) = δ+ and d−(S, S∗) = δ−, then
there are exactly δ+ + δ− elements of Y (S) and Y ∗(S)
on which costW (Y (S)) and costW (Y (S∗)) differ. De-
note the corresponding sets of edges as D+ and D−.
This implies that if costW (S) ≤ costW (S∗), then the
following sum must be negative.∑

(i,j)∈D+

Wij −
∑

(i,j)∈D−

Wij ≤ 0 (9)

Since the edge weights in W are drawn independently,
we can use Hoeffding’s inequality to bound the prob-
ability that this sum is negative. Hoeffding’s inequal-
ity bounds the deviation of a sum of independent and
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bounded random variables Xk ∈ [ai, bi] from its mean.

P
(∑

Xk − E(
∑

Xk) ≤ c
)
≤ e

−2c2∑
(bi−ai)

2

In our case, we set
∑

Xk =
∑

(i,j)∈D+
Wij −∑

(i,j)∈D−
Wij, E(

∑
Xk) =

∑
(i,j)∈D+

Mij −∑
(i,j)∈D−

Mij, c = −E(
∑

Xk), and
∑

(bi − ai)2 =
(δ+ + δ−)(b − a)2. We can now apply Ho-
effding’s inequality to bound the probability
P (
∑

Xk ≤ 0) = P (
∑

Xk − E(
∑

Xk) ≤ −E(
∑

Xk)).

P
(∑

Xk ≤ 0
)

≤ e

−2

( ∑
(i,j)∈D+

Mij−
∑

(i,j)∈D−

Mij

)2

(δ++δ−)(b−a)2

Since the Mij are bounded by µ+ and µ− in the planted
partition model, it holds that ∑

(i,j)∈D+

Mij −
∑

(i,j)∈D−

Mij

2

≥ (δ+µ+ − δ−µ−)2 ,

which completes the proof of the lemma.

The lemma bounds for a particular clustering S the
probability of drawing a W for which S has a mis-
leadingly good cost. To bound the probability for all
clusterings, we need an upper bound on the number of
possible clusterings. The exact number of clusterings
is know as the Bell number, but the following bound
suffices for our purposes.

Lemma 2 The number C#(n) of possible clusterings
of n points is at most n factorial.

Proof By induction over n. For n = 1 there is ex-
actly one clustering. Given C#(n − 1), for each clus-
tering of n− 1 objects the n-th object can either start
it’s own cluster, or join one of at most n− 1 existing
clusters in the clustering. So, there are at most n ways
to extend each of the existing clusterings of n objects.
This implies C#(n) ≤ nC#(n− 1).

We can now bound the probability that correlation
clustering returns a partition with large error. We
state the theorem in terms of the error rate Err(S, S∗),
which is the fraction of misclassified edges

Err(S, S∗) =
d(S, S∗)
n(n− 1)

Note that the following bound is with respect to the
randomness in drawing the cost matrix W . However,
note that the bound also holds for cases where the
optimization problem in Eqs. (1)-(5) does not have a
unique solution.

Theorem 1 Given the true partition S∗ of n points,
the probablity that correlation clustering returns a par-
tition Ŝ with Err(Ŝ, S∗) ≥ ε in the planted partion
model with µ = min{µ+,−µ−} and a ≤ Wij ≤ b is
bounded by

P (Err(Ŝ, S∗)≥ε) ≤ e
n ln(n)−2 ε n(n−1) µ2

(b−a)2 (10)

Proof We bound the probability that any partition
with error d(S, S∗) ≥ δ = ε n(n − 1) has a cost that
is better or equal to that of the true partition S∗. The
bound follows directly from the union bound and Lem-
mas 1 and 2.

P (∃S : d(S, S∗) ≥ δ ∧ costW (Y (S)) ≤ costW (Y (S∗)))

≤ n! e
−2

(δ+µ+−δ−µ−)2

(δ++δ−)(b−a)2 ≤ e
n ln(n)−2δ µ2

(b−a)2

This proves that with high probability no partition S
with distance d(S, S∗) ≥ δ has a cost that is better
than the cost of the true partition S∗. Since correla-
tion clustering returns the partition Ŝ with the lowest
cost, Ŝ has a distance d(Ŝ, S∗) less than δ with high
probablity.

Related bounds were derived by Condon and Karp
(2001), as well as McSherry (2001). However, Con-
don and Karp (2001) consider a more restricted set-
ting where all clusters have equal size, and this size is
known to the clustering algorithm a priori. Further-
more, both bounds are different from our work, since
they do not quantify the error between S∗ and an im-
perfect Ŝ.

The following example illustrates the bound. Assume
a planted partition model with µ = µ+ = −µ− = 0.5
and bounds a = 1 and b = −1. Let’s assume we
have n = 3000 objects X = (x1, ..., xn) and a true
partition S∗ = {S1, S2, S3} with three clusters of size
1000 each. Applying the bound tells us that with 95%
confidence, the error rate Err(Ŝ, S∗) of the partition
Ŝ returned by correlation clustering is at most 2.2%.
Furthermore, for true clusters of size k, moving e ob-
jects out of the correct cluster leads to a pairwise loss
of at least e k − e(e + 1)/2. This minimum pairwise
loss is achieved by splitting one of the clusters into
two subclusters of size e and k − e. Therefore, with
95% confidence at most 215 of the 3000 objects are not
clustered correctly.

4.2. Application: Query Clustering

We will now illustrate how the planted partition model
can be substantiated with particular parameters ac-
cording to application settings. We use query clus-
tering in search engines as an example. In query
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clustering, the goal is to group queries together that
are semantically related (e.g. the queries “imdb” and
“movie reviews”). To measure the relation between
two queries, we make use of the fact that users re-
formulate queries during their search. We consider a
fixed set of n queries as nodes (e.g. n popular queries).
Using the query log over some time interval, the adja-
cency matrix W is constructed by assigning Wij = 1
if some user issued query xi directly followed by query
xj , and Wij = w− < 0 otherwise. We will discuss the
choice of w− below. This representation exploits that
two consecutive queries by the same user are likely to
be related.

Before applying correlation clustering to W , we define
what we mean by a cluster of related queries. We
define that queries within the same cluster co-occur in
the query log during the time interval with probabiltiy
at least p+, while between cluster co-occurrences have
probability p− < p+. The independence assumption
approximately holds in this setting (especially, if one
considers only one query pair per user), so that one
can apply our results for the planted partition model
as follows.

Corollary 1 Based on the true partition S∗ of n
nodes, the edges of a directed graph are independently
drawn so that within-cluster edges have probability at
least p+, and between-cluster edges have probabiltity
less than p− < p+. From this graph construct W by
assigning Wij = 1 to each element corresponding to an
edge, and Wij = w− = p++p−

p++p−−2 otherwise. The prob-

ability that the error rate Err(Ŝ, S∗) of the correlation
clustering Ŝ of W is greater than ε is bounded by

P (Err(Ŝ, S∗)≥ε) ≤ en ln(n)− 1
2 ε n(n−1)(p+−p−)2 (11)

We omit the proof for brevity, since it is a direct conse-
quence of Theorem 1. Note that the particular choice
of w− maximizes µ = min{µ+,−µ−}. It is straightfor-
ward to derive other (and potentially tighter) versions
of the bound by replacing Hoeffding’s inequality, but
omit their discussion for brevity.

5. Asymptotic Behavior

How does the bound scale if the number of nodes in
the graph grows? Growing graphs are natural, for ex-
ample, in citation network analysis. Clustering in cita-
tion networks is used to reveal groups of related pub-
lications. Similar to query clustering, one could use
correlation clustering to find clusters of papers that
reference each other with high frequency. Let W be
the adjacency matrix of the citation graph in which

Wij = 1 if paper xi cites paper xj , and Wij = w− < 0
otherwise.

Clustering in citation networks is different from query
clustering in at least two respects3. First, while it is
easy to control the sparsity of the graph by considering
shorter or longer query logs in query clustering, the
sparsity of the citation graph cannot be manipulated.
Second, with a growing number of nodes, the number
of clusters grows as well. We discuss both issues in the
following.

5.1. How does the Bound Scale with
Increasing Sparsity of the Graph?

If the lower bound µ = min{µ+,−µ−} on the differ-
ence of means for between and within cluster edges is
a constant independent of n, then in Theorem 1 the
probability that the error is greater than any constant
fraction ε goes to zero since the second term in the ex-
ponent of (10) is order n2. However, µ being a constant
independent of n leads to very dense data. In citation
network analysis, for example, graphs are usually very
sparse with only a constant number of nonzero entries
per row. Such a level of sparsity implies that µ is of
size 1

n and that the second term in the exponent is
constant. In this case, the first term dominates giving
a meaningless bound of en ln(n). Thus, if we wish to
have small probability of more than a constant frac-

tion error, we need µ to grow faster than
√

ln(n)
n for

the second term in the exponent of e to dominate.

5.2. How does the Bound Scale with Cluster
Size?

For an increasing number of nodes n, assume that each
true partition S∗

n contains a fixed number k of clus-
ters S∗(n) = {S∗

1 (n), . . . , S∗
k(n)} that each grow pro-

portionally with n. Let fi = |S∗i (n)|
n be the constant

fraction of nodes in cluster S∗
i (n) and, without loss of

generality, let cluster k be the smallest cluster. With
increasing n, does correlation clustering eventually re-
cover each of the clusters? Suppose that we want to
guarantee with high probability that all but a fraction
of γ ≤ fk

2 nodes are clustered correctly. If γn nodes
are misclassified by some partition S, the value of the
pairwise loss is at least d(S, S∗(n)) ≥ 2n2γ(fk − γ).
Since d(S, S∗(n)) is quadratic in n, the bound from
Theorem 1 shows that the probability of misclassify-
ing a constant fraction γ of nodes goes to zero.

If the clusters do not grow proportionally with n but
3Furthermore, the independence assumption is likely to

be less valid than in query clustering.
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slower, the pairwise loss d(S, S∗(n)) does not grow
quadratically in n. This happens, for example, when
clusters grow at different rates or when the number of
clusters grows with n. To ensure convergence of the
bound from Theorem 1, we need d(S, S∗(n)) to grow
faster than n ln(n). This is ensured if the fraction of
nodes in each cluster grows faster than ln(n)

n .

6. Is a Clustering Significant?

In typical applications of correlation clustering we are
given a set of data W and we apply correlation clus-
tering to detect potential cluster structure. So far,
this paper addressed the question of whether the cor-
relation clustering Ŝ reveals the true underlying struc-
ture S∗. We will now turn to the related question of
whether the data reveals any significant cluster struc-
ture. Answering this question is important, since it
provides a practitioner with a measure of confidence
(or lack thereof) in Ŝ. In the following we use correla-
tion clustering to derive a significance test that let’s us
reject the null hypothesis that the data was produced
by a random process without any underlying structure.

As the null hypothesis, we use a planted partition
model where all edge-weight distributions P (Wij) have
the same mean, i.e. Mij = Mkl. This null hypoth-
esis captures that there is no structure in our data.
For simplicity of presentation, we consider only the
setting of citation network analysis, so that all Wij

take only two values indicating whether a particu-
lar edge is present or not. Let p be the probability
that any given edge is present. For correlation cluster-
ing, the resulting graph is transformed into a weighted
complete graph with weight matrix W by weighting
present edges with 1, and inserting an edge with weight
w− < 0 whenever there is no edge present.

In this model we can pick a cost threshold ρ and
bound the probability that the distribution from the
null hypothesis generates a set of data W for which
the partition Ŝ returned by correlation clustering has
costW (Y (Ŝ)) less than the threshold ρ. If we observe
that costW (Y (Ŝ)) is less than ρ for our given set of
data W , we can use this bound on the probability
to reject the null hypothesis with the corresponding
confidence. For technical reasons that will be dis-
cussed in the proof of Lemma 3, ρ must be less than
(n2 − η)p − (η − n)(1 − p)w−. The following deriva-
tion of the significance test proceeds by first bounding
the probability for a single S in Lemma 3, and then
by extending the result to hold uniformly for all S in
Theorem 2.

Lemma 3 Given a graph with n nodes and a partic-
ular clustering S of the graph for which we denote
||Y (S)|| as η. Let w− ∈ <, ρ ∈ <, and p ∈ < so
that w− < 0, 0 ≤ ρ ≤ (n2 − η)p − (η − n)(1 − p)w−,
and 0 ≤ p ≤ 1. If we randomly generate weights on
the edges of the graph so that edges have weight 1 with
probability p and weight w− otherwise, the probability
that clustering S has costW (Y (S)) ≤ ρ is

P (costW(Y(S)) ≤ ρ|S, η) ≤ e
−2

((n2−η)p−(η−n)(1−p)w−−ρ)2

n(n−1)(1−w−)2 .

Proof Since we have n(n− 1) random variables (i.e.
the off diagonal entries of the cost matrix) that are
bounded within [w−, 1], we can apply Hoeffding’s in-
equality and get

P (costW (Y (S)) ≤ ρ|S, η) ≤ e
−2

(E(costW (Y (S))−ρ)2

n(n−1)(1−w−)2 (12)

for ρ ∈ [0, (n2−η)p−(η−n)(1−p)w−]. Note that ρ has
to be less than E(costW (Y (S)) for Hoeffding’s inequal-
ity to apply, thus the restriction to the interval. It re-
mains to determine the expected cost E(costW (Y (S)).
For a partition matrix Y (S) with (η − n) off-diagonal
entries equal to 1 and (n2−η) entries equal to 0, the ex-
pectation is E(costW(Y(S)) = (n2−η)p−(η−n)(1−p)w−.
Substituting this into (12) yields the result.

Theorem 2 Let w− ∈ <, ρ ∈ <, and p ∈ < so that
w− < 0, 0 ≤ ρ ≤ n(n − 1)min{p,−(1 − p)w−}, and
0 ≤ p ≤ 1. For a complete graph with n nodes where
edges have weight 1 with probability p and weight w−
otherwise, the probability that the clustering Ŝ returned
by correlation clustering has costW (Y (Ŝ)) ≤ ρ is

P (costW(Y(Ŝ))≤ρ)≤e
n ln(n)−2

n(n−1)
(

min{p,(p−1)w−}−
ρ

n(n−1)

)2
(1−w−)2

Proof We prove a uniform bound in the sense that

P (costW (Y (Ŝ)) ≤ ρ) ≤ P (∃S : costW (Y (S)) ≤ ρ)

To apply the union bound, we need a bound on
P (costW (Y (S)) ≤ ρ|S, η) that holds independent of η.
Relaxing the bound from Lemma 3, it holds for every
clustering S independent of η = ||Y (S)|| that

P (costW (Y (S)) ≤ ρ|S)

≤ e
−2

(min0≤η≤n(n−1){(n2−η)p−(η−n)(1−p)w−}−ρ)2

n(n−1)(1−w−)2

= e
−2

n(n−1)(min{p,(1−p)w−}−
ρ

n(n−1)
)2

(1−w−)2

Applying the union bound w.r.t. the upper bound on
the number of clusterings from Lemma 2 yields the re-
sult.
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Note that p is a parameter that needs to be fixed inde-
pendent of the data. However, for practical purposes
one can consider estimating p as the fraction of posi-
tive edges in W . Given p, a reasonable choice for w−
is w− = − p

1−p , since it maximizes the numerator in
the exponent. For this choice of w− we can apply the
bound from Theorem 2 in a hypothesis test as follows.
We decide on a confidence level δ and solve

e
n ln(n)−2

n(n−1)
(

p− ρ
n(n−1)

)2
(1−w−)2 ≤ δ (13)

for the significance threshold ρ as follows.

ρ ≤ n(n−1)p− n

(
1+

p

1−p

)√
n ln(n)− ln(δ)

2
(14)

If costW (Y (Ŝ)) is less or equal to ρ, we can reject the
null hypothesis with confidence δ.

7. Conclusions and Future Work

We presented a simple probabilistic graph model in
which we analyze correlation clustering. The model
allows us to derive finite sample bounds on the error
with which correlation clustering recovers the graph
structure. The results give insight into the behavior
of correlation clustering with respect to the number
of nodes, the density of the edges, and the number of
clusters. Furthermore, we derive a test which can be
applied to validate the significance of a given cluster-
ing.

While the planted partition model is an interest-
ing starting point for analyzing clustering algorithms,
there is need for generalizing the model and remov-
ing its assumptions. Clearly, the biggest assumption
in the model is that edge weights are independently
distributed. It is an interesting question whether this
assumption can be relaxed without making the bounds
too lose for any practical relevance.

This work was funded in part under NSF awards IIS-
0412894, IIS-0312910, and the KD-D grant.
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