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ABSTRACT
This paper presents a novel approach for using clickthrough
data to learn ranked retrieval functions for web search re-
sults. We observe that users searching the web often perform
a sequence, or chain, of queries with a similar information
need. Using query chains, we generate new types of prefer-
ence judgments from search engine logs, thus taking advan-
tage of user intelligence in reformulating queries. To validate
our method we perform a controlled user study comparing
generated preference judgments to explicit relevance judg-
ments. We also implemented a real-world search engine to
test our approach, using a modified ranking SVM to learn
an improved ranking function from preference data. Our
results demonstrate significant improvements in the ranking
given by the search engine. The learned rankings outper-
form both a static ranking function, as well as one trained
without considering query chains.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Experimentation, Measurement

Keywords
Search Engines, Implicit Feedback, Machine Learning, Sup-
port Vector Machines, Clickthrough Data

1. INTRODUCTION
Designing effective ranking functions for free text retrieval

has proved notoriously difficult. Retrieval functions designed
for one collection and application often do not work well on
other collections without additional time consuming modi-
fications. This has led to interest in using machine learning
methods for automatically learning ranked retrieval func-
tions.
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For this learning task, training data can be collected in
two ways. One approach relies on actively soliciting training
data by recording user queries and then asking users to ex-
plicitly provide relevance judgments on retrieved documents
(such as [7, 13, 22]). Few users are willing to do this, making
significant amounts of such data difficult to obtain. An al-
ternative approach is to extract implicit relevance feedback
from search engine log files (such as in [6, 15]). This allows
virtually unlimited data to be collected at very low cost,
although interpretation is more complex.

Irrespective of the approach, to the best of our knowledge
all previous research in learning retrieval functions has con-
sidered each query independently. We will show that this
ignores valuable information that is hidden in the sequence
of queries and clicks in a search session. For instance, if we
repeatedly observe the query “special collections” followed
by another for “rare books” on a library search system, we
may deduce that web pages relevant to the second query may
also be relevant to the first. Additionally, this log informa-
tion can also allow us to learn to correct spelling mistakes in
a similar way. For example, we observed that users search-
ing for the “Lexis Nexis” repository often first search for
“Lexis Nexus” by mistake.

As users search, it is well documented that they often
reformulate their queries [3, 8, 18, 20]. Previous work has
attempted to predict query reformulations, but to the best
of our knowledge these reformulations have never been used
to learn better retrieval functions. In this paper, we refer to
a sequence of reformulated queries as a query chain. When
queries are considered independently, log files only provide
implicit feedback on a few results at the top of the result
set for each query because users very rarely look further
down the list. The advantage of using query chains is that
we can also deduce relevance judgments on the many more
documents seen during an entire search session.

The key contribution of this work is recognizing that we
can successfully use evidence of query chains that is present
in search engine log files to learn better retrieval functions.
We demonstrate a simple method for automatically detect-
ing query chains in query and clickthrough logs. Using
this data, we show how to infer preference judgments as to
the relative relevance of documents both within individual
query results, and between documents returned by different
queries within the same query chain. The method used to
generate the preference judgments is validated using a con-
trolled user study. We then adapt a ranking SVM to learn
a ranked retrieval function from the preference judgments.
In doing so, we propose a general retrieval model that can



learn to associate individual documents with specific query
words, even if the words do not occur in the documents.
This differs from previous learned ranked retrieval functions
in that our method can learn a much more general class of
functions.

We demonstrate the effectiveness of our approach on a
real-world web search system, the Cornell University library1

web search. We name our implementation the Osmot search
engine, and it is available for download to the research com-
munity. The name is derived from the word osmosis, as
learning from implicit feedback is, in our opinion, almost as
good as learning from users by osmosis.

2. RELATED WORK
When learning to rank, the method by which training

data is collected offers an important way to distinguish be-
tween different approaches. This data usually consists of a
set of statements as to the relevance of a document, or set
of documents, to a given query. Such relevance judgments
are either collected explicitly by asking users, or implicitly
by observing user behavior and drawing conclusions. More-
over, the statements can be absolute or relative. Absolute
feedback involves statements that a particular document is,
or is not, relevant to a query. Relative feedback involves
statements that a particular document is more relevant to a
query than some other document.

Most previous work in learning to rank has assumed ab-
solute relevance judgments. On the one hand, a number of
methods in ordinal regression use explicit feedback to learn
to rank, such as work by Crammer and Singer [7], Rajaram
et al. [22] and Herbrich et al. [13]. However, explicit feed-
back is expensive to collect, with few users willing to spend
the additional time to provide it in a real-world setting. This
makes typical labeled data sets small and difficult to work
with. A number of researchers have collected absolute rele-
vance judgments implicitly from clickthrough logs, such as
[4, 6, 19, 25]. They postulate that documents clicked on in
search results are highly likely to be relevant. For example,
Kemp et al. [19] present a learning search engine using doc-
ument transformation. They assume results clicked on are
relevant to the query and append the query to these docu-
ments. However, implicit clickthrough data has been shown
to be biased as it is relative to the retrieval function qual-
ity and ordering [15, 17]. This makes its interpretation as
absolute feedback of questionable accuracy.

Cohen et al. [6] and Freund et al. [9] propose using
log data to generate relative preference feedback. Both ap-
proaches consider learning a ranking function from these
preference judgments, along similar lines as this work. How-
ever, in contrast to our method their learned function is
limited to a combination of rankings given by a fixed set of
manually constructed “experts”. This approach of learning
a combination of functions is also used by most other work
in this area [1, 2, 4, 15, 21].

Joachims [15] refined the interpretation of clickthrough log
data as relative feedback. He suggests that given a ranking
and a clicked-on document d, any document ranked above d
but not clicked on is likely less relevant than d. In this paper,
we evaluate the validity of this construction, and extend it to
query chains. We also use a more general ranking function
and extend the learning algorithm to query chains.

1http://library.cornell.edu/
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Figure 1: Percentage of time an abstract was
viewed/clicked on depending on the rank of the re-
sult.
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Figure 2: Mean number of abstracts viewed above
and below a clicked link depending on its rank.

An important innovation in this paper is that we learn a
more general ranking function than previous work by asso-
ciating query words with specific documents. This approach
has been used previously to learn to generate abstracts [23],
and in document transformation [19], but not to learn rank-
ing functions. Prior approaches cannot learn to associate
“new” documents with a given query because they combine
or re-order results obtained from one or more static ranking
functions. In particular, given a query q, they cannot learn
to retrieve any document not originally returned by q. Com-
ing closest to solving this limitation previously, the method
presented by Kemp et al. [19] could be extended with query
chains. However, they assume implicit absolute feedback,
making their approach more likely to be susceptible to bias
and noise.

3. ANALYSIS OF USER BEHAVIOR
In order to infer implicit preference judgments from log

files, we need to understand how users assess search results.
Clearly we can only derive valid feedback for results that
the user actually looked at and assessed. In this section we
explore this question.

An eye tracking study was performed to observe how users
formulate queries, assess the results returned by the search
engine and select the links they click on [11, 12]. Thirty six
undergraduate student volunteers were instructed to search
for the answers to five navigational and five informational
queries [5]. The former involved finding a specific web page
while the latter involved finding some specific information.
The subjects were asked to start from the Google search
page and find the answers. There were no restrictions on
what queries they may choose, how and when to reformu-
late queries, or which links to follow. Users were told that
the goal of the study was to observe how people search the



Query 1: NDLF
1. http://.../staffweb/SMG/SMG970319.html
2. http://.../staffweb/SMG/SMG970226.html
3. http://.../staffweb/SMG/SMG960417.html
4. http://.../staffweb/SMG/SMG960403.html
5. http://.../staffweb/SMG/SMG960828.html

Query 2: “Ezra Cornell” residence
1. Dear Uncle Ezra – Questions for Tuesday, May. . .
2. Dear Uncle Ezra – Questions for Thursday,. . .
3. Ezra Cornell had close Albion ties
4. October 1904 – Albion 100 Years Age
5. Cornell competes with Off-Housing market

...

Figure 3: Two example queries and result sets.

Web, but were not told of the specific interest in their be-
havior on the results page of Google. All clicks, the results
returned by Google, and the pages connected to the results
were recorded by an HTTP proxy. Movement of the eyes was
recorded using an ASL 504 commercial eye tracker (Applied
Science Technologies, Bedford, MA). More details on the
experimental setup are provided in [12].

Figure 1 shows the fraction of the time users looked at,
and clicked on, each of the top 10 search results for a query.
It tells us that users usually look at least at the top two result
abstracts. Interestingly, note that despite the top two doc-
uments receiving almost equal attention, users were much
more likely to click on the first result. Figure 2 (adapted
from Figure 2 in [12]) shows the number of abstracts viewed
above and below any result that was clicked on. This fig-
ure tells us that users usually scan the results in order from
top to bottom. We also see that users usually look at one
abstract below any they click on. Further analysis showed
that this is usually the abstract immediately below the one
clicked on [17]. We conclude that users typically look at
most of the results from the first to the one below the last
one clicked on.

Previous work studying web search behavior [20, 24] ob-
served that users rarely run only a single query and imme-
diately find suitable results. Rather, they tend to perform
a sequence of queries for any given question. Such query
chains are also observed in the eye tracking study. The mean
query chain length was 2.2 queries, although the particular
questions asked and the laboratory environment would be
expected to have an influence on this value. A number of
papers (e.g. [3, 10, 18]) successfully learn to predict query
reformulations. Their success on this task suggests that the
problem of detecting query chains, which we will have to
address, is feasible.

4. FROM LOG FILES TO FEEDBACK
This section details our approach for generating relative

preference feedback from query and clickthrough logs as im-
plemented in the Osmot search engine. We then present
an evaluation of this approach using results from the eye
tracking study.

Consider the queries shown in Figure 3 as examples we use
to demonstrate the value of query chains. The first shows
the results presented to a user running the query “NDLF”

Click >q Skip Above
Click
First

>q
No-Click
Second

Click >q′ Skip Above
Click
First

>q′
No-Click
Second

Click >q′
Skip Earlier

Query
Click >q′

Top Two
Earlier Query

Figure 4: Feedback strategies. We either consider a
single query, q, or a query q that has been preceded
by a query q′. Given a query, a dot represents a
result document and an x indicates the result was
clicked on. We generate a constraint for each arrow
shown, with respect to the query marked.

on the Cornell University library search page. The user is
searching for the National Digital Library Foundation web-
site, but has retrieved only meeting notes that reference peo-
ple working for the NDLF. The desired page is not in these
results, most probably because it does not contain the word
“NDLF”. The second query is a search performed in Google
by a participant in the eye tracking study in attempting
to find the name of the house that Ezra Cornell built for
himself. We get many results, but in fact none of the top
10 contain any relevant information. In both cases, single
query feedback will not be informative because no relevant
documents were retrieved. In the former case, the results
simply do not contain any documents relevant to the query.
In the latter, if there is a relevant document it is unlikely
the user will look far enough in the results to see it.

On the other hand, after both of these queries, we ob-
served that the user continued running other queries. Often,
such later queries are more successful. If a user finds a rele-
vant document with a later query, it is reasonable to assume
that the user would have preferred to have seen the relevant
document over the results actually returned earlier. Recog-
nizing the information necessary to make these deductions
is present in search engine log files, we now propose spe-
cific strategies for generating such preference feedback from
query chains. We defer a discussion of how to group queries
into query chains to Section 6.

4.1 Implicit Feedback Strategies
We generate preference feedback using six strategies. These

strategies are illustrated in Figure 4. The first two strategies
show preferences that can be inferred without query chains.



q1 q2
d1 d4 x
d2 x d5
d3 d6

d2 >q1 d1 d4 >q2 d5 d4 >q1 d5

d4 >q1 d1 d4 >q1 d3

Figure 5: Sample query chain and the feedback that
would be generated using all six feedback strategies.
Two queries were run, and each returned three doc-
uments. One document in each query was clicked
on. di >q dj means that di is preferred over dj with
respect to the query q.

The first one, “Click >q Skip Above” was proposed in [6,
15]. This strategy proposes that given a clicked-on docu-
ment (marked x in the figure), any higher ranked document
that was not clicked on is likely less relevant. The preference
is indicated by an arrow labeled with the query, to show
that the preference is with respect to that query. We ex-
pect this to be valid because the eye tracking study showed
that users view results in order, and a user is unlikely to
click on a document she considers less relevant than another
document she observed. Note that these preferences are not
stating that the clicked-on document is relevant, rather that
it is more likely to be relevant than the ones not clicked on
above. The second strategy, “Click First >q No-Click Sec-
ond” makes use of the fact that users typically view both
of the top two results before clicking. It states that if the
first document is clicked on, but the second is not, the first
is likely more relevant than the second. It seems reasonable
to assume that having considered two options, the user is
likely to click on the more relevant one.

The next two strategies are identical to the first two except
that they generate feedback with respect to the previous
query. The intuition behind this is that since the two queries
belong to the same query chain, the user is looking for the
same information with both. Had the user been presented
with the new results for the earlier query, she would have
preferred the clicked-on document over those skipped above.

The last two strategies make the most use of query chains.
The strategy “Click >q′ Skip Earlier Query” states that a
clicked-on document is preferred over any result not clicked
on in an earlier query q′ (within the same query chain).
This judgment is made with respect to the earlier query,2

q′. Since the eye tracking study revealed that users usually
look one document past the last one clicked on, we also
generate a preference for this document. In the event that
no documents were clicked on in the earlier query, we use
the fact that users usually look at the top two results. This
is exploited in the feedback strategy “Click >q′ Top Two
Earlier Query” by generating preferences for the top two
results. In the unusual case where there are not enough
results to the earlier query to use these strategies, we select
a random document as if it had been at the end of the results.

Ultimately, given some query chain, we make use of all
six strategies to generate the preference feedback. Figure 5

2It is unnecessary to state the same thing with respect to the
later query q because presumably the preference is already
satisfied, or the user would have seen the same result earlier.

Strategy Accuracy
Click >q Skip Above 78.2 ± 5.6
Click First >q No-Click Second 63.4 ± 16.5
Click >q Skip Earlier Query 68.0 ± 8.4
Click >q Top Two Earlier Query 84.5 ± 6.1
Inter-Judge Agreement 86.4

Table 1: Accuracy of the strategies for generating
pairwise preferences from clicks. The base of com-
parison are the explicit page judgments. Note that
the first two cases cover two preferences strategies
each.

gives a sample query chain and the feedback that would be
generated in this case.

4.2 Accuracy of Feedback Strategies
While the feedback strategies proposed above are intu-

itively appealing, a quantitative evaluation is necessary to
establish their degree of validity. To determine the accu-
racy of each individual strategy, we conducted a controlled
experiment following the setup of the eye-tracking study de-
scribed in Section 3 for an additional 16 subjects. For these
subjects, we evaluated in how far the preferences derived
from the feedback strategies agree with explicit relevance
judgments made by independent judges.

For these 16 subjects, we collected all results and their
associated web pages returned by Google from the HTTP-
proxy cache that recorded their sessions. We grouped the
results by query chain and subject and collected explicit rele-
vance judgments using five judges. The judges were asked to
weakly order all results encountered during each query chain
according to their relevance to the question. To avoid bias-
ing the judges, the order in which results were presented to
the judges was randomized and the judges were not given the
abstracts Google used when presenting the results. Some of
the query chains were assessed by two judges for inter-judge
agreement verification. The agreement between judges is
reasonably high. Whenever two judges expressed a strict
preference between two pages, they agree in the direction of
preference in 86.4% of the cases.

We now evaluate the extent to which the preferences gen-
erated from clicks agree with the explicit judgments. Ta-
ble 1 summarizes the results. The table shows the percent-
age of times the preferences generated from clicks using the
above strategies agree with the direction of a strict prefer-
ence of a relevance judge. The first two lines in the table
show the accuracy of the strategies that do not exploit query
chains. The “Click >q Skip Above” strategy is 78.2% accu-
rate, which is substantially and significantly better than the
random baseline of 50%. Furthermore, it is reasonably close
in accuracy to the average agreement of 86.4% between the
explicit judgments from different judges, which can serve as
an upper bound for the accuracy one could ideally expect
even from explicit user feedback. The second within-query
strategy, “Click First >q No-Click Second”, appears less ac-
curate. However, since it produces fewer preferences (i.e.
only on queries where the user clicked exclusively on the
first link), the confidence intervals are large. Independent
of the accuracy, the preferences from this strategy are prob-
ably less informative, since they only confirm the current
ranking and never suggest a reordering.



Lines 3 and 4 in Table 1 show the accuracy of the two
strategies that exploit query chains. Both “Click >q′ Skip
Earlier Query” and “Click >q′ Top Two Earlier Query” are
significantly more accurate than random. In particular, the
accuracy of “Click >q′ Top Two Earlier Query” is very close
to the average agreement between judges. Note that this
strategy produces particularly informative preferences, since
it associates documents with query words that may not oc-
cur in the document.

A possible explanation for the difference in accuracy be-
tween the two query-chain strategies is that they apply to
different types of query chains. While “Click >q′ Skip Ear-
lier Query” is applied when the previous query received a
click, the strategy “Click >q′ Top Two Earlier Query” is
applied precisely in the opposite case. To investigate the ef-
fect of this difference, we also evaluated a variant of “Click
>q′ Top Two Earlier Query”. This variant generates prefer-
ences analogous to “Click >q′ Top Two Earlier Query”, but
in chains where the previous query did receive a click (but
excluding the clicked results). The accuracy of this strategy
is 67.7%±9.4, indicating that the absence of a click followed
by another query with a click is particularly strong evidence
regarding the relevance of the results of the earlier query.

Overall, we conclude that the preferences generated from
the clickthrough logs are reasonably accurate and that they
convey information regarding the user’s preferences.

5. EVALUATION ENVIRONMENT
While the previous section showed that the preferences

generated from logs files are accurate, can they be used to
learn an improved retrieval system?

To address this question, we constructed a publicly ac-
cessible real-world search engine. The search engine imple-
ments a full-text search of web pages maintained by the
Cornell University library1 (CUL). This collection includes
over 13,500 web pages. We used the Nutch search engine3

as a starting point, with the Osmot search engine effectively
being a wrapper around Nutch that implements logging, log
analysis, learning, reranking and evaluation functionality.
Osmot is designed to allow any number of different rank-
ing functions to be plugged into it. In the experiments in
this paper, we chose Nutch’s built-in retrieval function as
the baseline to compare against and build upon. The Nutch
retrieval function is based on the cosine distance and incor-
porates several modifications to make it more suitable for
web search including special cases for phrase matches and
HTML fields.

6. DETECTING QUERY CHAINS
In order to use query chains, we must first have a method

to identify them. In this section we propose such a heuristic
and demonstrate its effectiveness.

As a basis for our evaluation, we created a dataset us-
ing search logs from the CUL search engine. We manually
labeled query chains in the logs for a period of 5 weeks.
The search logs recorded the query, date, IP address, re-
sults returned, number of clicks on the results and a session
id uniquely assigned to each user. We extracted the list
of queries, grouped them by IP address and sorted them
chronologically. Queries from an IP address with no other
queries within 24 hours were automatically marked as not

3http://www.nutch.org/

CosineDistance(q1, q2)
CosineDistance(doc ids of r1’, doc ids of r2’)
CosineDistance(abstracts of r1’, abstracts of r2’)
TrigramMatch(q1, q2)
ShareOneWord(q1, q2)
ShareTwoWords(q1, q2)
SharePhraseOfTwoWords(q1, q2)
NumberOfDifferentWords(q1, q2)
t2− t1 ≤ {5, 10, 30, 100} seconds
t2− t1 > 100 seconds
NormalizedNumberOfClicks(r1)
NormalizedMin(|r1|, |r2|)
NormalizedMax(|r1|, |r2|)

Table 2: Features used to learn to classify query
chains. q1 and q2 are two queries at times t1 and t2,
with t1 < t2. r1 and r2 are the respective result sets,
with r1′ and r2′ being the top 10 results.

belonging to a query chain. This resulted in 1285 queries.
Two judges (the authors of this paper) then individually
grouped the queries into query chains manually, using search
engines to resolve uncertainties (such as a query for a person
followed by one for the department where the person is a fac-
ulty member). Finally, the judges combined their identified
query chains, resolving the small number of disagreements
between themselves through further investigation.

For each pair of queries from the same IP address within
half an hour, we generated a training example by construct-
ing a feature vector. The training example was labeled using
the query chains identified manually. If the two queries be-
longed to the same query chain the example was labeled as
positive. Otherwise it was labeled as negative. This led to
3418 training examples of which 3096 were labeled as posi-
tive. The feature vector generated given two queries q1 and
q2 consisted of the 16 features shown in Table 2.

Using this data, we trained a number of SVM classi-
fiers with various parameters. The classifiers learned tended
to label almost all examples as positive. Among our best
performing models was an SVM with an RBF kernel with
C = 100 and γ = 1. Evaluating using five-fold cross valida-
tion, it gave an average accuracy of 94.3% and precision of
96.5%. This compares to a accuracy and precision of 91.6%
for a simple non-learning strategy where we assume all pairs
of queries from the same IP address within half an hour of
each other are in the same query chain. As this difference is
relatively small, and computing this feature vector for every
query pair is relatively expensive (in particular since it de-
pends on the abstracts retrieved), we decided to rely simply
on our heuristic measure. We judged that a precision of over
90% is sufficient for our present purposes. We considered ex-
tending the half-hour window on our training data in order
to increase the recall, but decided that we were recognizing
a sufficient number of query chains without doing so.

However, to gain some insight into the properties of query
chains we trained a linear SVM using the same data and
computed the total weight on each feature. The features
with largest positive weight were CosineDistance(q1, q2),
which measures the cosine distance between q1 and q2, and
CosineDistance(doc ids of r1’, doc ids of r2’), which mea-
sures the overlap between the documents in the top 10 re-
sults. This indicates that if two queries are similar, or if



they retrieve many of the same documents, then they are
more likely to be in the same query chain. The feature with
largest negative weight measures the minimum number of
results returned by either query normalized between 0 and
1, NormalizedMin(|r1|, |r2|). This indicates that if one of
the queries returns few results, the queries are more likely to
be in a query chain. Our interpretation is that if q1 returns
no results, the user is more likely to run a second query.

We conclude that it is possible to segment log files into
query chains with reasonable accuracy.

7. LEARNING RANKING FUNCTIONS
Given log files recording user behavior on a web search

engine, we have shown how to transform the log records into
preference judgments in Section 4 after identifying query
chains using the method from Section 6. Next, we present
an algorithm to learn from these preferences, which we then
evaluate using the Osmot search engine described earlier.

We assume as input preference judgments over documents
di and dj for a given query q to be of the following form.

di >q dj (1)

Such a preference judgment indicates that di is preferred
over dj given q. As our retrieval model, we chose a linear
retrieval function:

rel(di, q) = w · Φ(di, q) (2)

where Φ(di, q) (which we define later) is a function that maps
documents and queries to a feature vector. Intuitively, it can
be thought of as a feature vector describing the quality of
the match between a document di and the query q. w is
a weight vector that assigns weights to each of the features
in Φ, thus giving us a real valued retrieval function where
a higher score indicates a document di is estimated to be
more relevant to the query q. The task of learning a ranking
function becomes one of learning an optimal w.

7.1 Ranking SVMs
We used a modified ranking SVM to learn w in Equation

2. Here, we briefly introduce ranking SVMs [15], which gen-
eralize ordinal regression SVMs [13]. We start by rewriting
Equation 1 as:

w · Φ(di, q) > w · Φ(dj , q)

We then add a margin, and non-negative slack variables to
allow some of the preference constraints to be violated, as
is done with classification SVMs. This yields a preference
constraint over w.

w · Φ(di, q) ≥ w · Φ(dj , q) + 1− ξij

Although we cannot efficiently find a w that minimizes the
number of violated constraints, we can minimize an upper
bound on the number of violated constraints,

P
ξij . Si-

multaneously maximizing the margin leads to the following
convex quadratic optimization problem:

minw,ξij
1
2
w · w + C

P
ij ξij

subject to
∀(q, i, j) : w · Φ(di, q) ≥ w · Φ(dj , q) + 1− ξij

∀i, j : ξij ≥ 0

(3)

We will later add more constraints to the optimization prob-
lem taking advantage of prior knowledge in the learning to
rank setting.

7.2 Retrieval Function Model
Next we must specify the mapping Φ(di, q). This defini-

tion is key in determining what class of ranking functions we
can learn, and is therefore particularly important in deter-
mining the usefulness of this method. We define two types of
features: rank features φf

rank(d, q) and term/document fea-
tures φterms(d, q). Rank features serve to exploit the exist-

ing retrieval functions relf0 , while term/document features
allow us to learn more fine-grained relationships between
particular query terms and specific documents.

First we need a few definitions. Let T := {t1, . . . , tN}
be all the terms (words) in our dictionary. A query q is
a set of terms q := {t′1, . . . , t′n} where t′i ∈ T . Let
D := {d1, . . . , dM} be the set of all documents in our
collection. We assume the original search engine has a num-
ber of available retrieval functions relf0 (d, q) with f ∈ F . We

define rf
0 (q) as the ordered set of results as ranked by relf0

for query q. In the experiments in this paper, F consists of
a single ranking function as provided by Nutch for the sake
of simplicity.

Now,

Φ(d, q) =

26664
φf1

rank(d, q)
...

φfF
rank(d, q)

φterms(d, q)

37775

φf
rank(d, q) =

26666666664

1(Rank(d in rf
0 (d, q)) ≤ 1)

...

1(Rank(d in rf
0 (q)) ≤ 10)

1(Rank(d in rf
0 (q)) ≤ 15)

...

1(Rank(d in rf
0 (q)) ≤ 100)

37777777775

φterms(d, q) =

264 1(d = d1 ∧ t1 ∈ q)
...

1(d = dM ∧ tN ∈ q)

375
where 1 is the indicator function.

Before looking at the term features φterms(d, q), let’s ex-

plore the rank features φfi
rank(d, q). For each retrieval func-

tion relfi
0 we have 28 rank features (for ranks 1,2,..,10,15,

20,..,100). Each of these is set to 1 if the rank of the docu-

ment in rfi
0 is at or above the specified rank.

The rank features allow us to learn weights for the rank-
ings of the original search results. This allows the learned
ranking function to combine different retrieval functions with
different weights, as is done in prior work described earlier.
We do not consider the specific scores assigned by relf0 in
order to account for potentially different magnitudes of the
scores from different retrieval functions. This also ensures
that our method could generalize to settings where we do not
have access to the scores assigned to documents but only the
document ranks. As an example, if some document d is at
rank 4 given query q and using retrieval function f1 then
φf1

rank(d, q) = [0, 0, 0, 1, . . . , 1]T . If a document is not
ranked in the top 100 by the retrieval function f1, then all
the features of φf1

rank are 0. This means that documents not

ranked in the top 100 results by a retrieval function relfi
0

are indistinguishable using the φfi
rank features (although we



could increase the maximum rank considered arbitrarily).
We chose this cutoff as it is extremely rare for users to look
beyond the top 100 results.

We also have NM term/document features. For conve-
nience, let φi,j

term(d, q) correspond to the term with di and tj

in φterms(d, q). There is one for every (term, document) pair
in T × D. The term/document features allow the ranking
function to learn associations between specific query words
and documents by assigning a non-zero value to the appro-
priate weight. This is usually an extremely large number of
features, although most never appear in our training data
and can thus be ignored. Furthermore, the feature vec-
tor φterms(d, q) is very sparse. For any particular docu-
ment d ∈ D, given a query with |q| terms, only |q| of the
φi,j

term(d, q) features are set to 1. Specifically, only the terms
for one i value (where d = di) and with tj ∈ q are non-zero.
The sparsity makes this problem well suited for solving us-
ing support vector machines. A positive value of the weight
wi,j

term, associated with the feature φi,j
term, indicates that di

is more likely to be relevant to queries containing the term
tj , while a negative value means the opposite.

7.3 Adding Prior Knowledge
When learning to rank, we have additional prior knowl-

edge that should be incorporated into this problem. Absent
any other information, documents with a higher rank in the
original ranking should be ranked higher in the learned rank-
ing system. This is intuitive because on average we would
expect the document relevance to be a decreasing function of
the original rank of the documents, unless the original rank-
ing function is particularly poor. We define such additional
constraints in this section.

It is also of practical importance to add these constraints:
In our training data almost all of the relevance judgments
generated state that a lower ranked document is preferred to
a higher ranked document. Without additional constraints,
a trivial and undesirable solution to the optimization prob-
lem in Equation 3 would be one that reverses the original
ranking by assigning a negative value to each of the weights
corresponding to rank features in Φ. To see this, consider
again Figure 4. The “Click >q(q′) Skip Above” preferences
would be satisfied if the rankings were reversed. These pref-
erences are much more common than “Click First >q(q′)

No-Click Second” preferences. In the last two preferences
classes, the preferred document is also presumably some-
where much lower in the results for q′ (if it is not in the
results, we can think of it as being at the bottom of the
results), and hence the preferences would also be satisfied if
the entire ranking were reversed.

We add additional hard constraints to the optimization
problem specified in Equation 3. These constraints require
that weights for each of the rank features must be greater
than a constant positive value wmin:

∀i ∈ [1, 28|F |]. wi ≥ wmin (4)

Intuitively, wmin limits how quickly the original ranking
is changed by training data. To see this, briefly consider
a setting where we have a single ranking function f and a
query q = t′ that returns at least 100 results. Let di be the

ranking r
d1

d2

d3

d4

ranking r′

d2

d5

d1

d6

⇒

combined(r, r′)

d1

d2

d5

d3

d4

f6

Figure 6: Two example rankings with four results
each, and the combined outputs we would gener-
ate by starting with the top ranked document from
ranking r.

document ranked at position i in rf
0 (q). In this case,

φf
rank(d100, q) = [0, . . . , 0, 0, 1]T

φf
rank(d95, q) = [0, . . . , 0, 1, 1]T

· · ·
φf

rank(d1, q) = [1, . . . , 1, 1, 1]T

Calling the part of w that corresponds to rank features
wrank, from Equation 4 we then get

wrank · φf
rank(d100, q) ≥ wmin

wrank · φf
rank(d95, q) ≥ 2wmin

· · ·
wrank · φf

rank(d1, q) ≥ 28wmin

Now say we have a document d that is preferred over d1

but is not in the original results. d would be ranked highest
if rel(d, q) > rel(d1, q). We know from Section 7.2 that

only φt′,d
term(d, q) is non-zero in φterms(d, q). Expanding and

simplifying, this would imply:

wterms · φterms(d, q) ≥ 28wmin + wterms · φterms(d1, q)

wd,q
term ≥ 28wmin + wd1,q

terms

where wα,β
term corresponds to φα,β

term(d, q).

The larger wmin, the larger in magnitude wd,q
term and wd1,q

term

must be before this happens. A ranking SVM minimizes over
w ·w + C

P
ξij , so the terms will only become large if there

is sufficient training data to support a reordering.

7.4 Evaluation Methodology
In order to evaluate our results, we need an unbiased

method for comparing two ranked retrieval functions. For
this purpose we use the method detailed in [16]. This method
was shown to give an accurate assessment of retrieval quality
under reasonable assumptions. Given two ranking functions,
we present users with a combination of the results from both.
We know that users scan results from top to bottom, so we
intertwine the results such that there is no presentation bias
favoring either ranking function. This evaluation method is
built into the Osmot search engine.

Figure 6 shows two example rankings, r and r′, from
two different retrieval functions as well as a combination
of them, combined(r, r′). Let seen(n, r) and seen(n, r′) be



the number of results the user has seen from rankings r and
r′ respectively after looking at the top n results from the
combined ranking. seen(n, r) and seen(n, r′) are defined
as the smallest number of results that we have to combine
from r and r′ to produce the top n results of the combined
ranking. We generate the combined ranking such that for
any n, seen(n, r) ≥ seen(n, r′) ≥ seen(n, r) − 1. In our
example, if the user looks at the top three results in the
combined ranking, this is satisfied because seen(3, r) = 2
and seen(3, r′) = 2. If the user looks at the top five results,
seen(5, r) = 4 and seen(5, r′) = 3. To compensate for a bias
toward the results of r (seen(n, r) is sometimes one bigger
than seen(n, r′)), we randomly switch r and r′ half the time.
This means that in expectation seen(n, r) = seen(n, r′).
The property is proved rigorously in [16].

Once we have presented the user with a combined ranking,
we need to evaluate which of the two rankings is preferred.
We first determine which results the user looked at by taking
the lowest ranked clicked-on document as where the user
stopped scanning the results (a conservative estimate). If
the two rankings are equally good, we would expect the
user to click on just as many results from each given that
she has seen an equal number from each (in expectation).
We measure clicks(r), the number of documents clicked on
that are in the top seen(n, r) results of r, and similarly
clicks(r′). For example, in Figure 6, say the user clicked
on d1 and d5. We would infer the user looked at the top 3
results. From before, we have seen(3, r) = seen(3, r′) = 2.
Therefore, clicks(r) = 1 (d1) and clicks(r′) = 1 (d5).

If in expectation clicks(r) > clicks(r′), we can conclude
that the user prefers the ranking r over r′. When evaluating
ranking functions, we count how often clicks(r) > clicks(r′),
and clicks(r) < clicks(r′). We then use a binomial sign test
to verify if the difference in counts of clicks(r) > clicks(r′)
and clicks(r) < clicks(r′) is statistically significant. If so,
we can say one ranking is preferred over the other.

7.5 Training the Ranking SVM
We collected training data from the CUL search engine

using the original ranking function between June and De-
cember 2004. During this time, we recorded user queries
and clicks, observing 9,949 queries and 7,429 clicks. While
we were collecting this data, the users saw results as ranked
by the built-in Nutch retrieval function, which we denote as
rel0. This gave 120,134 preferences constraints by applying
all six strategies introduced above. We call these preferences
PQC . Of these, 45,610 preferences were generated without
using the query chain strategies. We call this subset of the
preferences PNC .

After adding the hard constraints as described above, we
trained a ranking SVM for each of the two sets of prefer-
ences with a linear kernel and a default value of C using
SV M light[14]. We set wmin = 1. Using the preferences
PQC we learned a retrieval function relQC and using the
preferences PNC we learned relNC . The former model has
41,354 support vectors, while the latter has 18,034.

The ranking model learned using query chains, relQC , in-
stantiated 18,748 features. The number of features instan-
tiated can be expected to grow almost linearly in the size of
the document collection, and sub-linearly in the amount of
training data collected (depending on overall user search be-
havior). However, this did not pose a problem from the SVM
solver because all the preference judgments were sparse.

Evaluation User Prefers
Mode Chains Other Indifferent

relQC vs. rel0 392 (32%) 239 (20%) 579 (47%)
relQC vs. relNC 211 (17%) 160 (13%) 855 (70%)

Table 3: Results on Cornell Library search engine.
rel0 is the original retrieval function, relQC is that
trained using query chains, and relNC is that trained
without using query chains.

7.6 Results and Discussion
We evaluated the ranking functions on the CUL search

from 10 December 2004 through 18 February 2005 using
the evaluation method described in Section 7.4. When a
user connected to the search engine, we randomly selected
an “evaluation mode” for that user. The user either saw a
ranking combining rel0 and relQC or a ranking combining
relQC and relNC . For consistency, we kept the same combi-
nation for the duration of each user’s session (otherwise, if
the user immediately re-ran the same query he or she may
confusingly get different results).

During the evaluation, we collected about 1200 queries
in each evaluation mode. The results for both evaluation
modes are shown in Table 3. These results show a number
of interesting properties. Firstly, 53% of the time relQC ,
the ranking function trained using query chains, performs
differently to the original ranking function, rel0. 30% of
the time the two trained ranking functions perform differ-
ently. In particular, the first of these values indicates that
our method often makes a difference in search engine per-
formance. Given that the original ranking function is rea-
sonable, it would be surprising if these values were much
higher. As long as our method does not cause relevant doc-
uments that are ranked highly by rel0 to be lowered in rank,
we would see identical performance in the cases when rel0
performs well.

Secondly, from Table 3 we see that relQC outperforms rel0
more often than we would expect at random were the two
ranking functions equally good. Using a binomial sign test,
and the null hypothesis that the two ranking functions are
equally effective, we are able to reject the null hypothesis
with over 99% confidence. This establishes that our learned
ranking function is an improvement over the original one. Of
course, given the new ranking function, we are collecting new
training data and can re-run the whole learning process. We
expect this to produce continued improvement in ranking
performance.

Finally, the model trained using query chains outperforms
the model trained without using query chains with over 99%
confidence, using the same test. This demonstrates that by
exploiting the information about query chains present in log
files, we are able to see a measurable additional improve-
ment in search engine performance over what we would see
without using this extra information.

One may wonder if it makes sense to learn associations be-
tween specific query words and documents. Given our initial
9,949 training queries, Table 4 shows the top ten words that
appear most frequently in queries. We see that queries tend
to be repetitive. Ignoring the three stopwords in the top ten
words, we found that at least one of the remaining seven
words appears in 12% of all queries. At least one of the
top 100 words (removing stopwords) appears in 38% of all



Word Fraction of queries
of 3.56 %
library 2.75 %
bibliography 2.60 %
and 2.55 %
annotated 2.42 %
reserve 2.32 %
citation 1.99 %
web 1.48 %
the 1.41 %
course 1.33 %

Table 4: The most common words to appear in
queries in the training data, and the fraction of
queries in which they occur.

Word Document Weight
lexus Lexis-Nexis Academic Universe 22.8
ebook CUL eContent Collection 22.5

reuleaux CUL Digital Collections 21.8
and Printable News and Notes 07/03 19.6
oed Dictionaries and Encyclopedias 19.5
ndlf Management meeting notes 03/97 -21.0
ndlf Management meeting notes 02/97 -20.6
ndlf Management meeting notes 04/96 -19.5
ndlf Management meeting notes 04/96 -18.6

instruction Library Research Workshops -18.3

Table 5: Five most positive and most negative fea-
ture weights in the ranking function learned us-
ing query chains on the Cornell University Library
(CUL) search engine

queries. Moreover, for many popular queries, there appear
to be only a few documents that are truly relevant to the
query. Hence it is not surprising that by learning individ-
ual query word/document associations we can see significant
improvements in ranking results.

In order to understand where the improvements are com-
ing from, it is useful to look at the word/document features
with largest positive and negative weights. The top and
bottom five features are given in Table 5. First we con-
sider the top five features, which for the most part describe
very sensible associations. The feature for “lexus” is asso-
ciated with the main homepage of the Lexis-Nexis library
resource. This is clearly a spelling correction, with a search
for “lexus” originally returning no results. The same search
now places the correct document at the top of the results.
The feature for “ebook” returns the main ebooks web page.
A search for ebook previously returned seven results, none of
which were particularly useful. The top one, titled “Answers
to Frequent Job Searching Research Questions”, happened
to mention access to ebooks from off campus. The feature
for “reuleaux” is associated with an FAQ page page about
the CUL digital collections. The web page provides a clear
link to a site that describes models designed by Professor
Reuleaux. This contrasts with the original top result being
a broken link, and the second result being a newsletter with
only passing reference to the model collection. The feature
for “and” is of little practical interest (we did not remove
stopwords). Finally, the fifth word “oed” is an acronym for
the “Oxford English Dictionary”. The associated document

clearly links to it, in contrast with the original top result
which was an information bulletin showing a set of screen
shots how to get to the OED among other things.

The five features with the most negative weights in Table
5 are equally interesting. Four of them relate to meeting
notes mentioning the National Digital Library Foundation.
Using the original ranking function, this search generated
just 6 results with only such meeting notes. With the learned
system, a search for “ndlf” now returns similar results to a
search for “National Digital Library Foundation”. These
results appear slightly more useful from the short abstracts
that are presented. However, we discovered that in fact the
search engine had not indexed the main NDLF web page.
We see here that the search system has recognized users
running chains of queries looking for the NDLF website,
although none have been successful in finding it. Despite
this, some of the worst results for this query have indeed
been pushed down the results list. The fifth feature is harder
to interpret, but from log files it appears that users looking
for the Department of Learning and Instruction saw this
result and repeatedly skipped it. This document used to
appear as the top result given the query “instruction”.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have demonstrated that query chains

can be used to extract useful information from search engine
log files. After presenting an algorithm to infer preference
judgments from log files, we showed that the preferences
judgments are valid, independent of the learning method.
We then presented a method to identify query chains, and
an algorithm that uses the preference judgments to learn an
improved ranking function. The model used for the ranking
function is more general than in previous work. In partic-
ular, it allows the algorithm to learn to include new docu-
ments originally not present in initial search results in the
learned rankings. The evaluation shows our approach to be
effective, and that it can learn highly flexible modifications
to the original search results. The Osmot search engine is
available to the research community4.

A natural question that arises in this setting is the tol-
erance of this method to noise in the training data, partic-
ularly should users click in malicious ways. While we used
noisy real-world data, we plan to explicitly study the effect
of noise, words with two meanings, and click-spam on our
approach.

Also, the strategies presented in Section 4.1 give equal
weight to each pair of queries within a query chain. However,
we suspect that there is additional information present in
the position of a query within a chain, and of a click within
the sequence of all clicks for each chain. In particular, it
is possible that the last query and last clicks may be more
informative than earlier ones.

Thirdly, exploiting the fact that it is possible to collect
virtually unlimited amounts of search engine log data, we
believe that the methods presented in this paper can be
extended to learn personalized ranking functions. We are
currently refining the Osmot search engine and will use it
on the arXiv.org e-Print archive5 in order to conduct such
experiments.

Finally, from a practical perspective our approach pushes

4http://www.cs.cornell.edu/˜filip/osmot/
5http://www.arxiv.org/



the limit of problems that current SVM implementations can
solve in reasonable time due to the number of constraints we
generate. We believe there is room for improvement in learn-
ing methods to efficiently deal with such large numbers of
constraints, for example using an incremental optimization
approach. Perhaps there are also alternative learning meth-
ods, rather than SVMs, that can be used to optimize over
preference constraints while being able to learn sufficiently
general ranking functions.
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