Active Exploration for Learning Rankings from
Clickthrough Data

Filip Radlinski
Department of Computer Science
Cornell University
Ithaca, NY, USA

filip@cs.cornell.edu

ABSTRACT

We address the task of learning rankings of documents from
search engine logs of user behavior. Previous work on this
problem has relied on passively collected clickthrough data.
In contrast, we show that an active exploration strategy can
provide data that leads to much faster learning. Specifically,
we develop a Bayesian approach for selecting rankings to
present users so that interations result in more informative
training data. Our results using the TREC-10 Web corpus,
as well as synthetic data, demonstrate that a directed ex-
ploration strategy quickly leads to users being presented im-
proved rankings in an online learning setting. We find that
active exploration substantially outperforms passive obser-
vation and random exploration.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms

Algorithms, Measurement, Performance

Keywords

Clickthrough data, Web search, Active exploration, Learn-
ing to rank

1. INTRODUCTION

There has recently been an interest in training search en-
gines automatically using machine learning (e.g. [20, 4, 24]).
The ideal training data would be rankings of documents or-
dered by relevance for some set of queries. In some cases
it is practical to hire experts to manually provide relevance
information for particular queries (as in [4]), but usually
data provided by experts is too expensive and is not guar-
anteed to agree with the judgments of regular users. This
is a particular problem when typical user queries are short
and ambiguous, as is often the case in web search.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

KDD’07, August 12-15, 2007, San Jose, California, USA.

Copyright 2007 ACM 978-1-59593-609-7/07/0008 ...$5.00.

Thorsten Joachims
Department of Computer Science
Cornell University
Ithaca, NY, USA

ti@cs.cornell.edu

As an alternative source of training data, previous work
has used clickthrough logs that record user interactions with
search engines. However, as far as we are aware, all previous
work has only used logs collected passively, simply using the
recorded interactions that take place anyway. We instead
propose techniques to guide users so as to provide more use-
ful training data for a learning search engine.

To see the limitation of passively collected data, consider
the typical interactions of search engine users. Usually, a
user executes a query then perhaps considers the first two
or three results presented [14, 15]. The feedback (clicks) on
these results is recorded and used to infer relevance judg-
ments. These judgments are then used to train a learning
algorithm such as a ranking support vector machine [18].
In particular, users very rarely evaluate results beyond the
first page, so the data obtained is strongly biased toward
documents already ranked highly. Highly relevant results
that are not initially ranked highly may never be observed
and evaluated, usually leading to the learned ranking never
converging to an optimal ranking.

To avoid this presentation effect, we propose that the
ranking presented to users be optimized to obtain useful
data, rather than strictly in terms of estimated document
relevance. For example, one possiblility would be to inten-
tionally present unevaluated results in the top few positions,
aiming to collect more feedback on them. However, such an
ad-hoc approach is unlikely to be useful in the long run and
would hurt user satisfaction. We instead introduce princi-
pled modifications that can be made to the rankings pre-
sented. These changes, which do not substantially reduce
the quality of the ranking shown to users, produce much
more informative training data and quickly lead to higher
quality rankings being shown to users.

The primary contribution of this paper is to present a
principled approach to efficiently obtaining training data
that leads to rankings of higher quality. We start by pre-
senting a summary of observations about user behavior in
Section 2, as how real users behave guides our approach.
Next, in Section 3 we formalize the learning problem as an
optimization task, present a suitable Bayesian probabilistic
model and discuss inference and learning. Following this we
present strategies to modify the rankings shown to users so
that performance of learned rankings improves rapidly over
time in Section 4. We describe our evaluation method in Sec-
tion 5 and present results on synthetic data and TREC-10
Web data in Section 6. In particular, we see the improve-
ments using our exploration strategies are much faster than
with passive or random data collection.

2. USER BEHAVIOR

Learning rankings relies on training data collected from
users. We will now examine the specific properties of user
behavior as they will guide our approach for the remainder
of this work. In particular we will see what sort of data can
reasonably be collected from clickthrough logs and how we
should include user behavior in our learning task.

A number of studies have shown that users tend to click
on results ranked highly by search engines much more of-
ten than those ranked lower. For example, in recent work
Agichtein et al.[1] present a summary distribution of the rel-
ative click frequency on web search results for a large search
engine as a function of rank for 120,000 searches for 3,500
queries. They show that the relative number of clicks rapidly
drops with the rank — compared with the top ranked result,
they observe approximately 60% as many clicks on the sec-
ond result, 50% as many clicks on the third, and 30% as
many clicks on the fourth. While we may hypothesize that
this is simply because better results tend to be presented
higher, Joachims et al.[21] showed that there is an inher-
ent bias to rank in user behavior. They showed that users
still click more often on higher ranked results even if pre-
sented with rankings reversing the top ten results. In fact,
eye tracking studies performed by Granka et al.[15] show
that the probability that users even look at a search results
decays very quickly with rank.

On the one hand, this explains why most common per-
formance measures in information retrieval place greater
emphasis on highly ranked results (such as Mean Average
Precision, Normalized Discriminative Cumulative Gain and
Mean Reciprocal Rank). On the other hand, this observa-
tion means that rank strongly influences how many times a
document is evaluated by users, and hence how much train-
ing data can be collected from clickthrough logs.

Given the recorded clicks, the question also remains how
best to interpret the log entries to infer relevance infor-
mation about a document collection. Two alternative ap-
proaches to interpreting clickthrough logs are (1) consider
a click on a document in a result set as an absolute sign of
relevance, or (2) consider a click on a document as a pair-
wise judgment comparing the relevance of that document
to some other document considered earlier. Specifically, the
most common approach is to assume that a clicked on re-
sult is more relevant than a non-clicked higher ranked result.
Joachims et al.[21] showed that interpreting clicks as rela-
tive relevance judgments is generally reliable, while absolute
judgments are not. Such pairwise relevance judgments have
been successfully used to learn improved rankings [20, 24].

A final observation of user behavior is that clickthrough
logs are inherently very noisy. Users often click on search
results without carefully considering them [15]. In partic-
ular this means that any single judgment that states that
one document is more relevant than another has a signifi-
cant probability of being incorrect. However, previous work
has shown that if the difference in relevance between docu-
ments is larger, relative relevance judgments are less likely
to be noisy [25]. This work also showed that if adjacent pairs
of documents in the ranking shown to users are randomly
swapped to compensate for presentation bias, provably re-
liable pairwise relevance judgments about adjacent pairs of
documents can be collected.

We summarize that (1) Clickthrough data is best inter-
preted as relative relevance judgments; (2) The relevance

judgments are noisy; (3) The top ranked documents are the
most important to estimate correctly. Guided by these prop-
erties, we now turn to formalizing the learning problem.

3. LEARNING PROBLEM

Assume we have a document corpus C = {d1,...,d|c}
and some fixed user query ¢q. For this query, we want to
estimate the average relevance u; € R of each document
d; (for some user population). From the previous section,
we know that users can provide us with noisy judgments of
the form p; > p;. We assume that some ranking function
can provide initial estimates of u;. The goal is accurately
estimate p; with as little training data as possible.

The estimation task involves a three step interative pro-
cess: First, given relevance estimates, we must select a rank-
ing to display to users. Second, given the ranking displayed
users provide relevance feedback. Third, using the relevance
feedback, we update the relevance estimates and repeat the
process for the next user. In this paper, we focus most on
the first step, namely selecting rankings of documents to
show users so that the collected judgments allow the rele-
vance estimates to be improved quickly, while at the same
time maximizing the quality of the rankings.

3.1 Probabilistic Model

Let M* = (ui, ..., pjc|) € M be the true relevance values
of the documents in C. Modeling the problem of finding M*
given training data D in a Bayesian framework, we want to
maintain our knowledge about M™ in the distribution
P(DIM)P(M)

P(D)
We assume that P(M|D) is a multivariate normal with zero
covariance:

P(M‘D):N(Vl,'~'7V|C\;U%,---7U|2C\) (1)

P(M|D) =

Graphically, we can draw P(M|D) as a set of Gaussians
centered at v; with variance o?. For example:

/\
03
T X S ,\;\
V1 V4 Vs v3 V2
Relevance estimate

This model is motivated by ability estimates maintained
for chess players [11]. In the most closely related previous
work, Chu and Ghahramani [8] address a similar problem us-
ing Guassian Processes. However, instead maintaining the
distribution P(M|D), they directly estimate M™ given D.
This is also true of other related prior work [9, 10, 22]. The
key difference in our approach is that we are not simply find-
ing the optimizing ranking. Rather, maintaining P(M|D) is
key as it allows us to optimize for collected training data.

3.2 Inference

We measure the difference between relevance assignments
using a loss function £ : M x M — R. To find good rele-
vance estimates, we want to find an M = (u1,..., pc)) € M
such that £(M, M™) is small. Noting that M* is unknown,
we want to find the ranking that minimizes the expected
loss given what we know about M™*, namely P(M|D):

argmin Enrpuipy [L(M, M”)] (2)

where M™ is drawn from the probability distribution P(M|D).

Suppose the loss function £ can be decomposed over pairs
of documents in C. We can then decompose the expected
loss into a form easier to work with:

Ep =y [L(M, M™)]

lcl - I¢]
= Brar) [D D LM(M, M6 5)
i=1 j=i+1
el Ic)
= Y X Erorm [£7TOLM0D]©)
i=1 j=i+1

where P(M*|D) is shorthand for M™* ~ P(M|D).

We will now show that the mode of P(M|D), namely
M = (v1,...,7)¢)), is often the solution to Equation 2. Con-
sider solving Equation 2 for a loss function that counts the
number of misordered pairs of documents. The assignment
with minimum expected loss is the mode of P(M|D).

LEMMA 1. Let P(M|D) = N(v1,...,vc|;01,...,0¢|) be
a distribution over models. Assume L(M,M"*) counts the
number of differently ordered pairs of documents, when they
are sorted by p; and p; respectively. A solution of

arg;[nin E]\/I*NP(M\D) [ﬁ(M, M*)]

18 M = (1/1,. . '7V|C\)'

(opt opt

PROOF. Assume M°P'= (u%'.. ., el) is the minimizing

relevance assignment, and has lower loss than M. There
must exist two documents d; and d; that are ranked adja-
cently when documents are ordered by M°P yet are ordered
differently by M, i.e. pl** > ,u]Opt and v; < vj. Let M7T'"P
be the ranking obtained by reversing d; and d;. Let these
rankings have expected loss ESY"P and E°Pt.

As the documents are adjacent, the loss of M°Pt and M TP
only differs in the contribution of the pair (d;,d;). Plugging
in the loss function we get

BT — vt P(u; > p5) — Py > pi)

Vi —Vj _d Vi —V; <0

/ 2 2 / 2 2
O'i-i-O'j ai—l—aj

where ® is the cumulative distribution function of the stan-
dard normal distribution, since v; < vj. Hence we have a
contradiction as M°P is not the minimizing ranking. [

= ¢

We see a similar result for the loss function that penal-
izes any error in the difference of document relevances, i.e.

LR (M, M* 4, 5) = (i — p5) — (05 — 15))*
:N(Vl,...7U‘q|;01,...70‘c|) be
Assume LP7(M,M*,i,j) =
A solution of

LEMMA 2. Let P(M|D)
a distribution over models.

(i = 1) = (15 = 115))*
arg]&nin Enrisnppy [L(M, M)

8 M = (111,. . ~7V|C\)‘

PROOF. Let M°P* be the minimizing model. Let 50pt =

Pt — Opt be the difference in relevance estimates of d; and

d; accordmg to M°P* and 6” and 6;; be defined equivalently

for M and M* respectively. Let oij = (07 + oj /2 The
contribution to the expected loss for the pair of documents
(dird;) is

EP(]W* |D) [‘C'pair(Mv M*v i7])]

1 o0
= — exp | —
aij\/27r /_oo P

= ol + (0 — 577")?

(5: - 81)2 * opt\2 jox
]2&7{ (655 — 857)*do3;

which is minimized if 5;’;”& = 5” Hence M°Pt = M mini-
mizes all terms in the sum in Equation 3 simultaneously and
thus minimizes the expected loss. [

We see that the mode of the distribution P(M|D) minimizes
the expected loss for two reasonable loss functions. As it
can also be obtained very efficiently given P(M|D), for the
remainder of this work we will assume that the mode is,
or is close to, the minimizer of the expected loss. We will
refer to the ranking obtained by sorting documents by their
relevance according to the mode of P(M|D) as the mode
ranking.

3.3 Loss Function

Given our analysis of real user behavior in Section 2, we

see that the loss functions discussed above are too simple.
Specifically, two properties to expect of an appropriate loss
function are (1) The loss for ranking a less relevant docu-
ment above a more relevant document should be larger if the
documents are presented higher in the ranking (i.e. where
users are more likely to observe them); (2) The loss should
be larger if the difference in relevance is larger. To the best
of our knowledge there is no common pairwise decomposable
loss function with these properties so we propose a quadratic
hinge-loss function with cost of misordering decaying expo-
nentially with rank:
‘C'pa”(Mv M*7 Zv]) =e " ((,Uw.*)u‘]) - (lu): 7#;))2 Liisordered
With r;; we denote the minimum rank of d; or d; when all
documents are ordered by M (i.e. the relevance assignments
used to present results to users) divided by 10, and 1 is
the indicator function. A pair of documents is considered
misordered if the relative ranking according to M does not
agree with that according to M ™. Making use of the pairwise
form of the loss function and plugging in the mode ranking
M, the inner term of Equation 3 can now be written as

EP(]\/I* |D) [[,pair(M7 M*v i, j)]

- /Pmm,m) [P €7 A) d s

oo ((51*] - 51])2 pair .. *
\/70' p T 952 L (5237&]»“1) déij (4)
ij v

where 67; = p — pj, 3ij =v; —v; and O’Z] =o? +a]2v, noting
that the difference of two normally distributed variables is
also normally distributed. Plugging in the loss, and choos-
ing to sum over the pairs such that §;; is always negative,

Equation 4 becomes:
e i /oo (5* - z d5
= — i — 0i eXp
vV 27T0'ij 0 J J J

e [2<1+erf< f>> 6r (5>] ®)

where erf() is the error function. Substituting this into
Equation 3 gives an easy to compute closed form expres-
sion for the expected loss.

3.4 Estimating P(MID)

As discussed in Section 2, clickthrough data is best inter-
preted as relative relevance judgments. We can write them
in the form d; > dj, indicating that d; was judged more
relevant that d;. A standard approach to modelling noise
in pairwise comparisons is to assume that the probability of
an outcome is determined by the Bradley-Terry model [2]:

rel(d;) ()
rel(d;) + rel(d;)’
The Bradley-Terry
model can be reparameterized setting rel(d;) = 104i/9 where
o is a known, global and fixed parameter. Assuming the

pairwise judgments are independent (as can be reasonably
expected with clickthrough data from multiple users),

I P < djlpi,n)

di=d;€D

P(d; >~ dj) =

where rel(d;) is the relevance of d;.

P(DIM = (,LL1,...,MC|)) =

1

di>lgev 14107 imwi)/e
Given this likelihood model and a Gaussian prior, we can ap-
ply an off-the-shelf algorithm to maintain P(M|D), namely
the glicko rating system commonly used for rating chess
players [11]. Given an estimate of player ability (document
relevance) v; and error in the estimate o;, this algorithm
provides a set of approximate online update equations for
maintaining the estimated relevance and error as data is col-
lected. The update to the estimates for d;, following a single
comparison to d; (where s; is 1 if d; wins and 0 otherwise)
is presented in Table 1.

While it would also be interesting to compare alternative
ways of maintaining P(M|D) (e.g. [17]), or using a batch
algorithm (see [19] for a discussion of alternatives), the sim-
plicity and online aspects of the glicko system are appealing.
In particular, in real world settings where large amounts of
data are collected for large document collections with a large
number of queries, a global optimization is likely to be slow
and thus infeasible.

4. EXPLORATION STRATEGIES

As we have seen that users are much more likely to pro-
vide feedback on highly ranked documents, we turn to the
question of optimizing the data collection process to most
quickly minimize the loss. In particular, by selecting which
documents to present at high rank, we influence the pairs of
documents for which we obtain relevance judgments. In this
paper, we will consider only modifications that change two
documents in a ranking, limiting ourselves to the top two
most of the time. We will see that despite the simplicity
of this approach, substantial improvements in performance
can be obtained at small cost in presented ranking quality.

We consider the following algorithms for determining which
ranking to present users.

Passive Collection (Top2). Present the mode ranking, i.e.
sorting documents by M = (V1,5 1e))-

The algorithm Top2 assumes no changes are made to the
mode ranking, ignoring bias in data collection. This is the

vi — vi+ 1g(0])(si = Eslvi,vj,07)) (7)
zte
) 1 1\
it (3 (®)
where
log 10
= 400
9(02) — ;
V1+3¢%02 /72
1
E(S|Vi’yj’0j) - 1+10*9(0J2-)(w7uj)/400
1
= — —__x
q*g(07)?
1

E(s|vi, vy, 032-)(1 — E(s|vs, vy, C’?‘))

Table 1: glicko update equations

approach used in all previous work in learning to rank, and
would be effective if users provided feedback about results
throughout the ranking. In some settings this may be the
case, for example in search engines for academic articles
where many users thoroughly consider all retrieved results.
However in general web search settings, as discussed above,
users focus their attention on the highest ranked results.

Random Exploration (Random). Select a random pair of
documents and present them first and second. Then rank
the remaining documents according to M.

This algorithm is a naive modification to the presented
ranking. Two random documents are picked uniformly and
inserted at the top of the ranking presented to users. Given
the uniform distribution, this perturbation is likely to often
pick documents that have a low prior expectation of be-
ing relevant, thus likely presents users with poorer results.
However, it benefits from the potential for feedback on all
documents regardless of rank, even in the presence of signif-
icant user bias. A similar method was proposed by Pandey
et al. [23] in the context of identifying new web pages that
would soon become popular, suggesting to randomly insert
new documents into web search results.

Largest Expected Loss Pair (LELpair). Select the pair of
documents d; and d; that have the largest pairwise expected
loss contribution, and present these first and second. Rank
the remaining documents according to M. Formally, this
means we select the pair d; and d; that satisfies:

arg‘;;nax EP(]VI* |D) [ﬁpaw(M,]\J*7 7:, j)}

]

LELpair selects the pair of documents with largest pairwise
contribution to the expected loss out of all pairs of docu-
ments. By presenting these documents at a high rank, the
feedback given on them will reduce the uncertainty in the
relative relevance of the documents. This will, in the long
run, drive the expected loss contribution of the pair of doc-
uments down. Given the glicko update rules, the pairwise
contribution of all other pairs of documents will not increase.
Hence this method will eventually drive the expected loss

down. Additionally, due to the exponential decay in the loss
of misordered pairs as the rank increases, LELpair tends to
select pairs of documents where at least one has a high esti-
mated relevance. Lower ranked documents are also eventu-
ally selected, but only after high rank documents have been
evaluted and their expected loss contribution is reduced. If
we ignore the effect of rank in the loss function, this ap-
proach is similar to previous work in active learning where
users are asked to label items where the predicted label is
most uncertain (e.g. [3, 27]). In our setting, document pairs
with high pairwise contribution tend to be those with large
estimated error in relevance.

One Step Lookahead (OSL). For each pair of documents,
compute the expected pairwise loss and the expected pair-
wise loss after a comparison based on the Bradley-Terry
model (using M to estimate the probability of possible out-
comes) and glicko updates. Select the pair of documents
with the largest expected reduction in the pairwise loss and
present these first and second. Rank the remaining doc-
uments according to M. Formally, if M’ is the mode of
P(M|D) after updating it given the outcome of a compari-
son of d; and d;, we select the pair d; and d; that satisfies:

arg;n_ax |:EP(]\4*\D) [P (M, M* i, §)]
1F]

— By [Broue) [€7 (31, M7,)] |

Intuitively, this algorithm performs approximate gradient
descent on the loss function. OSL finds the pair whose con-
tribution to the expected loss is likely to decrease most fol-
lowing a pairwise comparison. The expected contribution of
the pair after a comparison is a weighted sum of the expected
loss contribution for the two possible outcomes (either d;
wins the comparison or d; wins). In this computation, the
effect of possible rank changes is ignored for efficiency rea-
sons. This method is also related to an approach proposed
by Chajewska et al. in the context of utility estimation where
they found that the true utility of many different outcomes
can be quickly discovered by maximizing the reduction in
expected loss given new data [6].

Largest Expected Loss Documents (LELdoc). For each
document d;, compute the total contribution of all pairs
including d; to the expected loss of the ranking. Present
the two documents with highest total contributions first and
second, and rank the remainder according to M. Formally,
this method selects the pair d; and d; that satisfies:

anga [3 B oy (€7 (W, M4,
17 a#i

+ Z EP(M* |D) [EpaiT(M7 M*uj: a’)]]
a#j

This method addresses a potential limitation of LELpair and
OSL: They only consider individual pairwise document con-
tributions to the expected loss despite the contributions of
pairs not being independent. LELdoc addresses this by com-
puting the total contribution of each document by summing
over all pairs including that document. For example, if some
document d is ranked third, it’s total contribution is the
risk from d and the top ranked document, plus the con-
tribution from d and the second document, plus the risk
from d and the fourth document and so forth. LELdoc se-

lects the two documents with highest total contributions and
presents them first and second. By comparing these two doc-
uments and reducing the uncertainty in their relevances, we
are likely to reduce the contributions to the risk of all pairs
including the documents.

An alternative selection algorithm proposed in previous
work (e.g. [13, 7]) is to compare pairs of items such that
the probability distribution over models changes most in
terms of KL-divergence or entropy. We do not pursue this
alternative as it does not take into account the loss function
being optimized.

Finally, we note that explorations strategies for rankings
are related to the opponent assignment problem in sports
tournaments. However, there are two key differences. First,
a tournament has a different concept of loss. A criterion
often optimized is the probability of the true best player
winning the final game (e.g.[12, 26]). Second, pairwise com-
parisons in a tournament have no cost. In most sports, a
common constraint is that all teams or players must com-
pete for at least n rounds. This means that each “item”
must be compared with some other item every round and
the optimization problem is to select which pairs are com-
pared such that the loss is eventually minimized rather than
ailming to minimize the loss as quickly as possible.

S. EVALUATION METHODOLOGY

We now have a number of strategies for eliciting useful
training data from users of a search system, and have a
method to estimate the relevance of the documents using
our probabilistic model. In this section, we will describe how
these strategies were evaluated. In particular, we will com-
pare how effective each strategy is at improving the quality
of the rankings shown to users.

We evaluate as follows: Given an initial ranking of one
thousand documents as returned by a search engine in re-
sponse to a query, we derive a prior P(M). This prior initial-
izes P(M|D). For a particular exploration strategy, we next
select a ranking to present to users. We evaluate the loss
of the presented ranking and of the mode ranking derived
from M. Next, we simulate user behavior on the presented
ranking, using a simple behavioral model, and collect train-
ing data that is used to update the model parameters. We
repeat this process 3,000 times for each initial ranking. This
experimental setup is formalized in Algorithm 1.

The behavioral model we use to simulate clickthrough
data is detailed in Algorithm 2. By using a simulation, it
is possible to evaluate the exploration strategies in detail
without needing large numbers of test subjects, and avoid
effects that may be unique to specific users (e.g. to academic
users). Our model simplifies real behavior by assuming that
users only click on top two results, and do so with probabil-
ity specified by the Bradley-Terry model. This is motivated
by the fast decay observed in the number of clicks as rank in-
creases in real search systems. Clearly, in a real setting some
additional data would be collected from lower ranks, making
the results we report conservative in this respect. However,
the amount of data collected about results at lower ranks
would be significantly smaller.

We repeated each experiment with either 30 or 100 ini-
tial rankings, each giving a different initial set of relevance
estimates. We report the mean loss across all runs (nor-
malized such that the initial loss is 1), or the mean average
precision (MAP). In some results we present a single final

Algorithm 1 Evaluation Setup

1: Input: Estimated relevances {v;} for d; € C

2: 04 «+— oo for d; € C

3: for iteration 1 through 3,000 do
Pick two documents d;, d; to rank 1%t and 27¢
Randomly swap d; and d; (see Section 2)
Show the selected ranking to user
Record training data given user feedback
Update v, vj, 0;, 0; per Equations 7 and 8

end for

Algorithm 2 User Behavioral Model

: Input: Ranking of documents (di,...,d¢|)
: Input: True relevances of documents (ui,...,pjc)

. if UniformRandom(0,1) < m then

1
2
3
4: Winner is di: s1 < 1; s2 < 0
5: else

6: Winner is da: s1 < 05 s2 «+— 1
7: end if

performance, i.e. the loss or MAP after 3,000 pairwise com-
parisons and model updates. Note that as our rankings are
of 1,000 documents, 3,000 comparisons is on average just six
noisy pairwise comparisons involving each document.

6. RESULTS

We start by evaluating the exploration strategies on syn-
thetic data, where we evaluate their effectiveness if the as-
sumed prior distribution matches the true data generating
model. This will be followed by an evaluation using TREC-
10 data.

6.1 Synthetic Data

We randomly generated a corpus of 1000 documents with
expected relevances p; drawn from N (1500, 147%). We chose
this scale as it is comparable to typical chess scores. We
then drew ten independent initial models, drawing v; from
N (p;,147) and initializing o; = 147 = 0. We repeated this
process three times, giving 30 initial rankings over three
different random corpora.

For each initial ranking, we ran each strategy for 3,000
iterations. Figure 1 shows the loss of the mode ranking
at each iteration. Along the horizontal axis is the number
of pairwise comparisons. After each pairwise comparison,
P(M|D) is updated and a new pair to compare is selected.
The vertical axis is the average loss of the mode ranking
relative to the initial average loss. The error bars indicate
one standard error in the mean scaled loss.

Which exploration strategy learns fastest?

The first question to answer is which strategy learns fastest.
The passive Top2 approach does not lead to a meaningful
overall reduction in the loss. This is because our user model
assumes that users only provide feedback on the top two
documents. After a few comparisons, the top few documents
have their relative position correctly established and no new
documents are ever compared again. Our other baseline
algorithm, Random, sees the loss decrease slowly.

We see that the other exploration strategies all perform
substantially better than the baselines. Both LELpair and

0.4

R

Loss as a fraction of original loss

S I
%@m}v&ﬁw ¥ e e e S Y B

P
.

g B @,
E Rt B P

OsL
LELdocs —-= -))))

0 500 1000 1500 2000 2500 3000
Number of pairwise comparisons

Figure 1: Change in loss as a function of the number
of pairwise comparisons for each exploration strat-
egy on synthetic data

0.8

0.6

0.4

Loss after 3000 pairwise comparisons, as a fraction of initial loss

. -7
L3 =1

i LB L] T ropr ——
o . op2 |

02 e TR - = Random ---x---

el i LELpair —-%~

B e gSL o

.

|LELdoc -

50 100 150 200 250 300
Assumed initial standard deviation of prior relevance estimates

Figure 2: Effect of weight of prior on the final loss
evaluated on synthetic data (true noise is og = 147)

OSL quickly reduce the total loss by selecting pairs of doc-
uments with high contributions to the expected loss, and
high expected reductions in it. We see this improvement
continues for a large number of comparisons. In contrast,
LELdoc appears to asymptote more quickly. This is be-
cause the documents selected continue to be those at high
ranks even after many comparisons. In effect, LELdoc is
too biased toward highly ranked documents. Comparing
with LELpair and OSL, we see that while lower ranked doc-
uments may have lower total contribution to expected loss,
they often have higher inidividual pairwise contributions.

How robust is the approach to prior assumptions?

The second natural question to ask is how robust the results
are to the weight given to the initial ranking, as in the case
of real data the correct weight is likely to be unknown. This
weight is encoded by the initial values of o, i.e. g9. We now
explore the effect of changing that value. This experiment
is possible because we know the level of noise used when
generating synthetic data.

Figure 2 shows the effect of selecting an assumed noise
level that differs from the true noise level. With our default
setting, and that used to generate our synthetic datasets,
the probability of a document in the top 10 according to the

prior not being in the top 100 according to true relevance is
about 8%. We can see that selecting a suboptimal o does
not drastically reduce performance after a fixed number of
pairwise comparisons. Apart from LELdoc, the best perfor-
mance is achieved when the actual noise is correctly known.
Interestingly, LELdoc performs best when the error in the
prior is underestimated as it then selects documents further
down the ranking for comparison.

6.2 TREC Data

In addition to the fully synthetic data, we also evaluated
the exploration strategies using the TREC-10 web track
queries (topics 501 through 550) in the WT10g document
corpus. This subset of the corpus includes 50 topics and
topic descriptions, run as queries on documents that are
part of the corpus. As part of the 10th Text REtrieval Con-
ference (TREC-10) [16], 18 teams submitted a ranking of
documents for each topic. Then, for each topic, documents
ranked highly by the teams were manually judged to be ei-
ther highly relevant (relevance score of 2), relevant (score
of 1) or non-relevant (score of 0). All other documents in
the corpus were assumed non-relevant (score of 0). The
discretized nature of these relevance judgments is unrealis-
tic, as few documents are likely to have precisely the same
relevance in the real world. To compensate and make the
learning problem more realistic, we added uniform random
noise in the range [—0.5, 0.5] to the true relevance judgments,
preserving the relative order of highly relevant, relevant and
non-relevant documents.

For each of the 50 TREC-10 topics, we randomly selected
two submissions and used the submitted scores to initialize
our model. We then repeated the evaluation described for
synthetic data. Each submission includes a ranking of typi-
cally 1000 documents, with a score given to each document.
The scores are arbitrary and unnormalized. Clearly they
can be interpreted as a prior in any number of ways. As
each ranking typically contains both highly relevant docu-
ments and non-relevant documents, we chose to normalize
the scores to a linear interval [1500 + 09,1500 — oo] with
oo = 147. The resulting scores were used to set the initial
v;. The initial estimated error o; were set to cg. This means
that a document with a score near the maximum score is es-
timated to have approximately a 30% percent chance of in
fact being in the lower half of the ranking.

Which exploration strategy learns fastest?

Figure 3 shows the performance of the exploration strate-
gies. We see that LELpair, OSL and LELdoc improve the
loss significantly and rapidly. We also see that Top2 per-
forms as it did on the synthetic data. One the other hand,
Random performs differently: The loss of the mode ranking
initially increases, then improves slightly but remains high.
We believe that this is due to the mismatch between the
prior and model. When two documents are compared, if the
outcome is not the expected one (e.g. due to noise) then
the update to the relevance estimates can be large. Some-
times, the lower ranked document is projected to a much
higher rank, and the loss does not quickly recover due to
few pairwise comparisons per document. Interestingly, per-
formance of Random depends on the quality of the initial
ranking. When the initial loss is high, after 3,000 pairwise
comparisons the loss tends to be reduced. The opposite is
true when the algorithm starts with a very good ranking.

,,,,,,

Loss as a fraction of original loss

Random ---x---

LELpair ---%---
OsL &

LELdoc --m--

0.2 . 1 1 1 1
0 500 1000 1500 2000 2500 3000

Number of pairwise comparisons

Figure 3: Change in loss as a function of the number
of pairwise comparisons for each selection algorithm
on TREC-10 data

0.5 T

045 I LELdoc -

Mean Average Precision

0.15 L L L L L
0 500 1000 1500 2000 2500 3000

Number of pairwise comparisons
Figure 4: Change in M AP score as a function of the
number of pairwise comparisons for each selection
algorithm on TREC-10 data

How do the strategies perform with respect to MAP?

The loss function presented earlier is not one commonly used
to evaluate rankings. A measure much more widely used
by the research community is the mean average precision
(MAP). To compute the MAP, we consider each document
with true relevance p; above some threshold as relevant and
others as irrelevant. The average precision of a ranking is
the average of the precision measured at each relevant docu-
ment'. The MAP score is the mean of the average precisions
across all 100 experiments. We used a threshold of 0.5 scaled
in the same way the scores were scaled.

Figure 4 shows how the MAP of the ranking changes as
more pairwise comparions are performed. MAP visibly be-
haves very similarly to our loss function. We see that LEL-
pair and OSL result in the largest improvement in MAP, and
appear likely to continue to improve further with more pair-
wise comparisons. As before, LELdoc performance plateaus
after a small number of pairwise comparisons and Top2 sees
almost no improvement. Random performs poorly, with an

I For simplicity, we only consider the 1000 ranked documents when
computing the MAP score. While the corpus may contain relevant
documents that never made it into the top 1000, these do not con-
tribute to the MAP score.

06 T

LELpair ------
055 |- Sl o

LELdoc —-m--
Initial MAP -------
0.5

045 i

0.4

[=]

K E—

e

e |
)
t !
N 1
. }
N, i
N
i
4
i
[
Y
PN

MAP score after 3000 pairwise comparisons

0.2

1 1 1
6 0.7 0.8 0.9 1
Probability user clicks on more relevant document

0.15

ol L

0.5

Figure 5: Effect of different noise levels in pair-
wise preferences on final MAP score, evaluated on
TREC-10 data.

initial drop in MAP although after 2,000 pairwise compar-
isons the MAP is above baseline.

How does noise influence learning speed?

So far, our simulation has assumed a particular amount of
noise in user clicks. Given two documents that differ in true
relevance by one TREC relevance level, we have assumed
that the user will click on the more relevant one 70% of the
time. While this level of noise is realistic [21], it is of partic-
ular interest to observe what would happen to the difficulty
of the learning task if the noise in pairwise preferences were
different. We modified our user model to change the level
of noise, and changed the glicko update equations equiva-
lently. Figure 5 shows the final MAP score after 3,000 pair-
wise comparisons as the level of noise changes. First, we see
that irrespective of the noise level, the best pair exploration
strategies remain LELpair and OSL. On the left of the figure
we see that if there is a lot of noise in the pairwise prefer-
ences, all the algorithms perform more poorly. This is to be
expected, given that the amount of information contained in
3,000 pairwise preferences decreases as the amount of noise
in user clicks increases. On the other end of the scale, we see
that even if users select the more relevant document almost
100% of the time, the final MAP score decreases somewhat.
This is a side-effect of the normal approximation implicit in
the glicko updates [11].

How robust is this method to noise assumptions?

The above results assume the noise level is known in ad-
vance. Figure 6 shows the effect of a mismatch between the
assumed noise level (used to scale the initial scores, and in
the glicko updates) and the true level of noise in pairwise
preferences (in the user model). Along the horizontal axis
we have the probability a user selects the correct document
in a pair as more relevant, if the true relevances of the pair
differ by one TREC relevance level. The figure shows how
the MAP of the mode ranking after 3,000 pairwise compar-
isons is affected by different estimates of the noise in pairwise
clicks. Each line corresponds to a different assumed noise
level. The figure shows that if the amount of noise is under-
estimated, performance is poorer although not drastically so
(unless the noise is underestimated substantially). On the

T
Assume p=51% —+—
Assume p=60% ---X---
Assume p=
Assume p= -
Assume p=90% ----®--
08 - Initial MAP -------

=
A
1

T

MAP score after 3000 pairwise comparisons

1 1 1
0.5 0.6 0.7 0.8 0.9 1
Probability user clicks on more relevant document

Figure 6: Effect of incorrect assumptions about the
noise level in relevance judgments on final MAP
score, evaluated on TREC-10 data using OSL.

Loss Function MAP Score
e~ i ((uf — p13) — Wi — 1)) Limisorderea | 0.481 4 0.017
(= 1) = Wi = v3))” Lonisorderea | 0.281 +0.017
e ((uf —) — (i — 1)) 0.287 £ 0.012
e " Limisordered 0.337 +0.020

Table 2: Mean Average Precision after 3000 itera-
tions of optimizng different loss variants using OSL.

other hand, we see that if the pairwise preferences are less
noisy than assumed, the final performance does not suffer.

Of particular interest, these results tell us that the best
strategy is to assume the level of noise conservatively in or-
der to see the best performance improvements. Finally, it
is worth noting that in the case of extremely noisy clicks
it may be beneficial to aggregate user clicks, i.e. collect a
number of pairwise judgments for each pair of documents,
then count this as a single pairwise judgment for the docu-
ment with the most preference votes. This would reduce the
effective level of noise in pairwise judgments at the expense
of necessitating more data.

Which loss functions are a good proxy for MAP?

So far, our experimental results show that minimizing the
expected loss also improves the MAP. We now demonstrate
that the loss function presented in Section 2 leads to par-
ticularly good MAP performance. Table 2 shows the MAP
performance after 3,000 pairwise comparisons if we optimize
OSL to different variants of the loss function presented, by
ignoring individual properties suggested in Section 3.3.

We see that using a loss function without exponential de-
cay, without a distance penalty or without a hinge leads
to substantial and significant reductions in the final MAP
scores. In particular, optimizing a loss function that sim-
ply depends on document ranks, rather than on the actual
relevance estimates (the fourth line of the table) leads to
poorer MAP performance. This shows that despite MAP
only being sensitive to document order, minimizing error in
relevance estimates leads to better MAP performance.

6.3 Controlling for Presentation Loss

The figures in the previous two sections show the loss and

05

T T
Random: Mode ranking —e—
Random: Presented ranking
L: Mode ranking ---&--- gt
045 - OSL: Presented ranking -------- "
- Initial MAP ——-- o

MAP score

0 500 1000 1500 2000 2500 3000
Number of pairwise comparisons

Figure 7: MAP scores of the mode rankings, and
the presented rankings as a function of number of
pairwise comparisons for OSL and Random.

MAP of the mode ranking as pairwise preference data is
collected. However, to collect the data, the ranking of doc-
uments that is presented to users is not the mode ranking.
Rather, users see rankings with a pair of results inserted at
the top. This means that usually the presented ranking has
a higher loss and a lower MAP score than the mode rank-
ing. The difference between the MAP of the presented and
mode rankings is shown in Figure 7. The top two lines are
for OSL. The top line shows the MAP of the mode ranking.
The second line shows the MAP of the ranking shown to
users. We see that while the presented ranking is worse than
the mode ranking, it is almost immediately above the initial
MAP, and improves quickly as data is collected. The sep-
aration between the two rankings increases because as the
relevance of higher ranked documents is established, lower
ranked documents are shown more often. We see a sim-
ilar effect comparing the presented and mode rankings of
the Random strategy in the lower two lines, although the
presented ranking does not have a higher MAP than the
initial ranking for all 3,000 pairwise comparisons. We also
note that the MAP of the presented ranking using OSL is
substantially better than the mode ranking when the Ran-
dom exploration strategy is used.

An interesting final experiment is to consider the tradeoff
between the quality of the presented ranking and the quality
of the mode ranking. One possibility to reduce the impact
of data collection would be to presenting selected pairs at
lower ranks instead of at the top two positions. With real
users, this would lead to a reduction in the amount of data
collected, but may improve the MAP of the presented rank-
ing by reducing the performance gap. Figure 8 shows how
the MAP score of the presented ranking after 3,000 pairwise
comparisons would change if the selected pair was presented
at a lower rank. The reduction in the amount of data col-
lected as a function of rank is shown along the horizontal
axis. For example, if for some user population moving the
selected pair down by one rank reduces the number of pair-
wise preferences collected by 60%, the correct point for an
evaluation would be 0.4 on the horizontal axis. This would
mean that by presenting a pair at rank 2 and 3 rather than
1 and 2, we would only receive 40% as many clicks. Pre-
senting selected pairs at ranks 3 and 4 would receive 16%

05

0.4

e
-

0.3 ==

MAP score after presenting 3000 pairs
o
@
&

[

Present selected pairs at ranks 1 and 2 ------
Present selected pairs at ranks 2 and 3 ------
Prese‘m selec(eq pairs at ra‘nks 3 andz‘x 2

0.2 L L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Relative fraction of data collected by presenting pair one rank lower

Figure 8: MAP scores of the presented ranking after
3000 pairwise comparisons assuming pairs presented
at different ranks.

05

0.4

0.3 |—=

MAP score after presenting 3000 pairs
o
@
&

Presented ranking with selected pair at ranks 1 &
Presented ranking with selected pair at ranks 2 &
Presented ranking with selected pair at ranks 3 &

Mode ranking presenting at ranks 1 &
Mode ranking presenting at ranks 2 &
Mode‘ ranking prgsenung al‘ranks 3&

02 L L L L
0.1 0.2 03 04 05 0.6 0.7 08

Relative fraction of data collected by presenting pair one rank lower

Figure 9: MAP scores of the mode and presented
rankings after 3000 pairwise comparions.

as many clicks. At 0.4, we see that due to the reduction
in the amount of data collected, the MAP of the presented
ranking would be lower if the selected pairs were at ranks 3
and 4 rather than at ranks 1 and 2.

Taking the same lines as in Figure 8 and overlaying the
MAP of the mode rankings for all three ranks, we get Figure
9. It shows that the separation between the mode ranking
and the presented ranking decreases as the rank of the se-
lected pair is decreased. However, the MAP of the mode
ranking also decreases, especially if much less data is col-
lected when pairs are presented at lower ranks.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have formalized the ranked relevance
elicitation problem, and demonstrated that by using active
exploration the quality of a ranking can be improved faster
than by collecting pairwise training data passively or naively.
We presented a number of strategies to minimize the ex-
pected loss and showed that two in particular perform well.
Our experiments showed a significant level of robustness to
noise in the clickthrough data and to prior assumptions, and
demonstrated how presentation loss and quality of learned

ranking can be traded off.

A natural extension of this work would be to find a global
optimization approach for this problem so as to derive a
provably optimal algorithm to collect training data using a
regret minimization approach. There has also recently been
interest in minimizing the number of documents that need
to be evaluated by human judges to evaluate performance of
ranking algorithms on a document collection (e.g. [5, 28]).
While such human judgments are absolute, i.e. a human is
asked to rate each document on a fixed scale, it would be
interesting to adapt our approach to a setting that minimizes
the number of evaluations necessary with an appropriate
prior and loss function.

8. ACKNOWLEDGMENTS

The second author was partly supported by a Microsoft
Ph.D. Student Fellowship. This work was also supported by
NSF Career Award No. 0237381 and a gift from Google.

9. REFERENCES

[1] E. Agichtein, E. Brill, S. Dumais, and R. Ragno.
Learning user interaction models for predicting web
search result preferences. In Proceedings of the ACM
Conference on Research and Development in
Information Retrieval (SIGIR), 2006.

[2] R. A. Bradley and M. E. Terry. The rank analysis of
incomplete block designs. 1. the method of paired
comparisons. Biometrika, 39:324-345, 1952.

[3] K. Brinker. Active learning of label ranking functions.
In Proceedings of the International Conference on
Machine Learning (ICML), 2004.

[4] C. Burges, T. Shaked, E. Renshaw, A. Lazier,

M. Deeds, N. Hamilton, and G. Hullender. Learning
to rank using gradient descent. In Proceedings of the
International Conference on Machine Learning
(ICML), 2005.

[5] B. Carterette, J. Allan, and R. Sitaraman. Minimal
test collections for retrieval evaluation. In Proceedings
of the ACM Conference on Research and Development
in Information Retrieval (SIGIR), 2006.

[6] U. Chajewska, D. Koller, and R. Parr. Making
rational decisions using adaptive utility elicitation. In
Proceedings of the National Conference on Artificial
Intelligence (AAAI), 2000.

[7] W. Chu and Z. Ghahramani. Extensions of gaussian
processes for ranking: Semi-supervised and active
learning. In Proceedings of the NIPS 2005 Workshop
on Learning to Rank, 2005.

[8] W. Chu and Z. Ghahramani. Preference learning with
gaussian processes. In Proceedings of the International
Conference on Machine Learning (ICML), 2005.

[9] O. Dekel, C. D. Manning, and Y. Singer. Log-linear
models for label ranking. In Proceedings of the
Internation Conference on Advances in Neural
Information Processing Systems (NIPS), 2003.

[10] N. Fuhr. Optimum polynomial retrieval functions
based on the probability ranking principle. ACM
Transactions on Information Science (TOIS),
7(3):183-204, 1989.

[11] M. E. Glickman. Parameter estimation in large
dynamic paired comparison experiments. Applied
Statistics, 48:377-394, 1999.

[12] M. E. Glickman. Bayesian optimal design of knockout
tournaments, 2006. Under Review.

[13] M. E. Glickman and S. T. Jensen. Adaptive paired
comparison design. Journal of Statistical Planning and
Inference, 127:279-293, 2005.

[14] L. Granka. Eye tracking analysis of user behaviors in
online search. Master’s thesis, Cornell University,
2004.

[15] L. Granka, T. Joachims, and G. Gay. Eye-tracking
analysis of user behavior in WWW search. In Poster
Abstract, Proceedings of the ACM Conference on
Research and Development in Information Retrieval
(SIGIR), 2004.

[16] D. Hawking and N. Craswell. Overview of the
TREC-2001 web track. Nov 2001.

[17] R. Herbrich and T. Graepel. Trueskill”™®: A bayesian
skill rating system. Technical Report
MSR-TR-2006-80, Microsoft Research, 2006.

[18] R. Herbrich, T. Graepel, and K. Obermayer. Large
margin rank boundaries for ordinal regression. In
A. S. et al., editor, Advances in Large Margin
Classifiers, pages 115-132, 2000.

[19] D. R. Hunter. MM algorithms for generalized
bradley-terry models. The Annals of Statistics,
32(1):384-406, 2004.

[20] T. Joachims. Optimizing search engines using
clickthrough data. In Proceedings of the ACM
International Conference on Knowledge Discovery and
Data Mining (KDD), 2002.

[21] T. Joachims, L. Granka, B. Pan, H. Hembrooke,

F. Radlinski, and G. Gay. Evaluating the accuracy of
implicit feedback from clicks and query reformulations
in web search. ACM Transactions on Information
Systems (TOIS), 25(2), April 2007.

[22] R. Lin, T. A. Louis, S. M. Paddock, and G. Ridgeway.
Loss function based ranking in two-stage hierarchical
models. Bayesian Analysis, 1(4):915-946, 2006.

[23] S. Pandey, S. Roy, C. Olston, J. Cho, and
S. Chakrabarti. Shuffling a stacked deck: The case for
partially randomized ranking of search engine results.
In Proceedings of the International Conference on
Very Large Data Bases (VLDB), 2005.

[24] F. Radlinski and T. Joachims. Query chains: Learning
to rank from implicit feedback. In Proceedings of the
ACM Conference on Knowledge Discovery and Data
Mining (KDD), 2005.

[25] F. Radlinski and T. Joachims. Minimally invasive
randomization for collecting unbiased preferences from
clickthrough logs. In Proceedings of the National
Conference on Artificial Intelligence (AAAI), 2006.

[26] D. Ryvkin. The predictive power of noisy elimination
tournaments. Under review.

[27] M. Saar-Tsechansky and F. Provost. Active sampling
for class probability estimation and ranking. Mach.
Learn., 54(2):153-178, 2004.

[28] L. Torrey. An active learning approach to efficiently
ranking retrieval engines. Technical Report
TR2003-449, Computer Science Dept., Dartmouth
College, 2003.

