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ABSTRACT
In the study of human learning, there is broad evidence that
our ability to retain information improves with repeated ex-
posure and decays with delay since last exposure. This plays
a crucial role in the design of educational software, leading
to a trade-off between teaching new material and reviewing
what has already been taught. A common way to balance
this trade-off is spaced repetition, which uses periodic review
of content to improve long-term retention. Though spaced
repetition is widely used in practice, e.g., in electronic flash-
card software, there is little formal understanding of the
design of these systems. Our paper addresses this gap in
three ways. First, we mine log data from spaced repetition
software to establish the functional dependence of retention
on reinforcement and delay. Second, we use this memory
model to develop a stochastic model for spaced repetition
systems. We propose a queueing network model of the Leit-
ner system for reviewing flashcards, along with a heuristic
approximation that admits a tractable optimization prob-
lem for review scheduling. Finally, we empirically evaluate
our queueing model through a Mechanical Turk experiment,
verifying a key qualitative prediction of our model: the exis-
tence of a sharp phase transition in learning outcomes upon
increasing the rate of new item introductions.

CCS Concepts
•Applied computing → Computer-assisted instruc-
tion; •Mathematics of computing → Queueing the-
ory;
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1. INTRODUCTION
The ability to learn and retain a large number of new

pieces of information is an essential component of human
learning. Scientific theories of human memory, going all the
way back to 1885 and the pioneering work of Ebbinghaus [9],
identify two critical variables that determine the probability
of recalling an item: reinforcement, i.e., repeated exposure
to the item, and delay, i.e., time since the item was last re-
viewed. Accordingly, scientists have long been proponents
of the spacing effect for learning: the phenomenon in which
periodic, spaced review of content improves long-term reten-
tion.

A significant development in recent years has been a grow-
ing body of work that attempts to ‘engineer’ the process of
human learning, creating tools that enhance the learning
process by building on the scientific understanding of hu-
man memory. These educational devices usually take the
form of ‘flashcards’ – small pieces of information content
which are repeatedly presented to the learner on a sched-
ule determined by a spaced repetition algorithm [4]. Though
flashcards have existed for a while in physical form, a new
generation of spaced repetition software such as SuperMemo
[20], Anki [10], Mnemosyne [2], Pimsleur [18], and Duolingo
[3] allow a much greater degree of control and monitoring of
the review process. These software applications are growing
in popularity [4], but there is a lack of formal mathemati-
cal models for reasoning about and optimizing such systems.
In this work, we combine memory models from psychology
with ideas from queueing theory to develop such a mathe-
matical model for these systems. In particular, we focus on
one of the simplest and oldest spaced repetition methods:
the Leitner system [13].

The Leitner system, first introduced in 1970, is a heuristic
for prioritizing items for review. It is based on a series of
decks of flashcards. After the user sees a new item for the
first time, it enters the system at deck 1. The items at each
deck form a first-in-first-out (FIFO) queue, and when the
user requests an item to review, the system chooses a deck i
according to some schedule, and presents the top item. If the
user does not recall the item, the item is added to the bottom
of deck i−1; else, it is added to the bottom of deck i+1. The
aim of the scheduler is to ensure that items from lower decks
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are reviewed more often than those from higher decks, so the
user spends more time working on forgotten items and less
time on recalled items. Existing schemes for assigning review
frequencies to different decks are based on heuristics that are
not founded on any formal reasoning, and hence, have no
optimality guarantees. One of our main contributions is a
principled method for determining appropriate deck review
frequencies.

The problem of deciding how frequently to review different
decks in the Leitner system is a specific instance of the more
general problem of review scheduling for spaced repetition
software. The main challenge in all settings is that schedules
must balance competing priorities of introducing new items
and reviewing old items in order to maximize the rate of
learning. While most existing systems use heuristics to make
this trade-off, our work presents a principled understanding
of the tension between novelty and reinforcement.

1.1 Related Work
The scientific literature on modeling human memory is

highly active and dates back more than a century. One of the
simplest memory models, the exponential forgetting curve,
was first studied by Ebbinghaus in 1885 [9] – it models the
probability of recalling an item as an exponentially-decaying
function of the time elapsed since previous review and the
memory ‘strength’. The exact nature of how strength evolves
as a function of the number of reviews, length of review in-
tervals, and other factors is a topic of debate, though there is
some consensus on the existence of a spacing effect, in which
spaced reviews lead to greater strength than massed reviews
(i.e., cramming) [8, 5]. Recent studies have proposed more
sophisticated probabilistic models of learning and forgetting
[17, 15], and there is a large body of related work on item
response theory and knowledge tracing [14, 7]. Our work
both contributes to this literature (via observational studies
on log data from the Mnemosyne software) and uses it as
the basis for our queueing model and scheduling algorithm.

Though used extensively in practice (see [4] for an excel-
lent overview), there is very limited literature on the de-
sign of spaced repetition software. One notable work in
this regard is that of Novikoff et al. [16], who propose a
theoretical framework for spaced repetition based on a set
of deterministic operations on an infinite string of content
pieces. They assume identical items and design schedules
to implement deterministic spacing constraints, which are
based on an intuitive understanding of the effect of mem-
ory models on different learning objectives. The focus in
[16] is on characterizing the combinatorial properties (e.g.,
maximum asymptotic throughput) of schedules that imple-
ment various spacing constraints. Though our work shares
the same spirit of formalizing the spaced repetition problem,
we improve upon their work in three ways: (1) in terms of
empirical verification, as our work leverages both software
log data and large-scale experimentation to verify the mem-
ory models we use, and test the predictions made by our
mathematical models; (2) in computational terms, wherein,
by using appropriate stochastic models and approximations,
we formulate optimization problems that are much easier to
solve; and (3) in terms of flexibility, as our model can more
easily incorporate various parameters such as the user’s re-
view frequency, non-identical item difficulties, and different
memory models.

1.2 Our Contributions
The key contributions of this paper fall into two cate-

gories. First, the paper introduces a principled methodol-
ogy for designing review scheduling systems with various
learning objectives. Second, the models we develop provide
qualitative insights and general principles for spaced repe-
tition. The overall argument in this paper consists of the
following three steps:

1. Mining large-scale log data to validate human memory
models: First, we perform observational studies on data
from Mnemosyne [2], a popular flashcard software tool,
to compare different models of retention probability as
a function of reinforcement and delay. Our results, pre-
sented in Section 2, add to the existing literature on mem-
ory models and provide the empirical foundation upon
which we base our mathematical model of spaced repeti-
tion.

2. Mathematical modeling of spaced repetition systems: Our
main contribution lies in embedding the above memory
model into a stochastic model for spaced repetition sys-
tems, and using this model to optimize the review sched-
ule. Our framework, which we refer to as the Leitner
Queue Network, is based on ideas from queueing theory
and job scheduling. Though conceptually simple and easy
to simulate, the Leitner Queue Network does not provide
a tractable way to optimize the review schedule. To this
end, we propose a (heuristic) approximate model, which
in simulations is close to our original model for low ar-
rival rates, and which leverages the theory of product-
form networks [11, 6] to greatly simplify the scheduling
problem. This allows us to study several relevant ques-
tions: the maximum rate of learning, the effect of item
difficulties, and the effect of a learner’s review frequency
on their overall rate of learning. We present our model,
theory, and simulations in Section 3.

3. Verifying the mathematical model in controlled experi-
ments: Finally, we use Amazon Mechanical Turk [1] to
perform large-scale experiments to test our mathemati-
cal models. In particular, we verify a critical qualitative
prediction of our mathematical model: the existence of a
phase transition in learning outcomes upon increasing the
rate of introduction of new content beyond a maximum
threshold. Our experimental results agree well with our
model’s predictions, reaffirming the utility of our frame-
work.

Our work provides the first mathematical model for spaced
repetition systems which is empirically tested and admits
a tractable optimization problem for review scheduling. It
opens several directions for further research: developing bet-
ter models for such systems, providing better analysis for the
resulting models, and performing more empirical studies to
understand these systems. We discuss some of these open
questions in detail in Section 5. Our experimental platform
can help serve as a testbed for future studies; to this end,
we release all our data and software tools to facilitate repli-
cation and follow-up studies (see Section 4).

2. TESTING HUMAN MEMORY MODELS
To design a principled spaced repetition system, we must

first understand how a user’s ability to recall an item is



affected by various system parameters. One well-studied
model of human memory from the psychology literature is
the exponential forgetting curve, which claims that the prob-
ability of recalling an item decays exponentially with the
time elapsed since it was last reviewed, at a rate which de-
creases with the ‘strength’ of the item’s memory trace. In
this section, we conduct an observational study on large-
scale log data collected from the Mnemosyne [2] flashcard
software to validate the exponential forgetting curve.

Exponential Forgetting Curve.
We adopt a variant of the standard exponential forget-

ting curve model, where recall is binary (i.e., a user either
completely recalls or forgets an item) and the probability of
recalling an item has the following functional form:

P[recall] = exp (−θ · d/s), (1)

where θ ∈ R+ is the item difficulty, d ∈ R+ is the time
elapsed since previous review, and s ∈ R+ is the memory
strength. Our formulation is slightly different from that of
Ebbinghaus [9], in that we have added an explicit item diffi-
culty parameter θ, which corresponds to the assumption that
there is a constant, item-specific component of the memory
decay rate.

To justify the use of this memory model in our schedul-
ing algorithm, we first explore how different forms of the
exponential forgetting curve model fit empirical data. In
particular, we explore the use of a global item difficulty θ
vs. an item-specific difficulty θi, as well as several simple
models of memory strength: a constant strength s = 1, a
strength s = nij equal to the number of repetitions of item
i for user j (where nij ≥ 1), and a strength s = qij equal to
the position of item i in the Leitner system for user j (where
qij ≥ 1).

Experiments on Log Data.
We use large-scale log data collected from Mnemosyne [2],

a popular flashcard software tool, to validate our assump-
tions about the forgetting curve. After filtering out users
and items with fewer than five interactions, we select a ran-
dom subset of the data that contains 859, 591 interactions,
2, 742 users, and 88, 892 items. Each interaction is anno-
tated with a grade (on a 0-5 scale) that was self-reported
by the user. Users are instructed by the Mnemosyne soft-
ware to use a grade of 0 or 1 to indicate that they did
not recall the item, and a grade of 2-5 to indicate that
they did recall the item, with higher grades implying eas-
ier recall. We discretize grades into binary outcomes, where
recall , grade ≥ 2 and, and observe an overall recall rate
of 0.56 in the data. Additionally, we scale the time intervals
between reviews to days.

We compare the exponential forgetting curve from Eqn.
1 to three benchmark models: the zero- and one-parameter
logistic item response theory models (henceforth, 0PL-IRT
and 1PL-IRT) and logistic regression. The 0PL-IRT user
model assumes the recall likelihood follows P[recall] = φ(θj)
for each user j observed in the training set (where φ is the
logistic link function); similarly, the 0PL-IRT item model
assumes P[recall] = φ(βi) for each item i in the training
set. The 1PL-IRT model [14], a mathematical formulation
of the Rasch cognitive model [19], has the following recall
likelihood: P[recall] = φ(θj−βi) for user j and item i, where
θ is user proficiency and β is item difficulty. The logistic re-
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Figure 1: Schematic of the classification task used to
evaluate memory models: Each square corresponds
to a user-item interaction with a binary outcome.
The gray squares are thrown out. This training-
validation split occurs on each fold, with sets of full
and truncated histories changing across folds.

gression model uses the following statistics of the previous
review intervals and outcomes to predict recall: mean, me-
dian, min, max, range, length, first, and last.

Logistic regression and 1PL-IRT are trained using MAP
estimation with an L2 penalty, where the regularization con-
stant is selected to maximize log-likelihood on a validation
set. All other models are trained using maximum-likelihood
estimation (i.e., with an implicit uniform prior on model
parameters). The hyperparameters in the IRT models are

user abilities ~θ and/or item difficulties ~β; the hyperparam-
eters in the exponential forgetting models are item-specific

difficulties ~θ or a global difficulty θ. We use ten-fold cross-
validation to evaluate the memory models on the task of pre-
dicting held-out outcomes. Our performance metric is area
under the ROC curve (AUC), which measures the discrimi-
native ability of a binary classifier that assigns probabilities
to class membership.1 On each fold, we train on the full his-
tories of 90% of user-item pairs and the truncated histories
of 10% of user-item pairs, and validate on the interactions
immediately following the truncated histories. Truncations
are made uniformly at random – see Fig. 1 for an illustra-
tion of this scheme. After using cross-validation to perform
model selection, we evaluate the models on a held-out test
set of truncated user-item histories (20% of the user-item
pairs in the complete data set) that was not visible during
the earlier model selection phase.

Table 2 summarizes all the models that were evaluated,
with rows 1-4 representing the benchmarks and rows 5-14
variants of the exponential forgetting curve model. We com-
pare models which use a global item-difficulty parameter θ
(rows 5-9) vs. item-specific difficulties θi (rows 10-14); more-
over, we allow the memory strength to be constant (rows 6
and 11), proportional to the number of reviews nij (rows
5,7,10,12), or proportional to the position of the item in the
Leitner system qij (rows 8,9,13,14).

The predictive performance of the models on validation
and test data is given in Fig. 2 and 3. We make four key

1We use AUC as a metric instead of raw prediction accuracy
because it is insensitive to class imbalance.



P[recall] Model
1 φ(θj) 0PL-IRT user
2 φ(−βi) 0PL-IRT item
3 φ(θj − βi) 1PL-IRT
4 φ(β · x) Logistic regression
5 exp (−θ · dij/nij) Exponential forgetting curve
6 exp (−θ · dij)
7 exp (−θ/nij)
8 exp (−θ · dij/qij)
9 exp (−θ/qij)
10 exp (−θi · dij/nij)
11 exp (−θi · dij)
12 exp (−θi/nij)
13 exp (−θi · dij/qij)
14 exp (−θi/qij)

Table 1: Summary of models used for prediction: In
all cases, the subscripts refer to user j and item i.
Rows 1-4 represent our benchmarks; here φ is the
logistic function, while in row 4, x refers to the fea-
ture vector of review interval and outcome statistics
described earlier in this section, and β is a vector
of coefficients. In rows 5-14, dij is the time elapsed
since previous review of item i for user j, qij denotes
the position of item i in the Leitner system for user
j and nij is the number of past reviews of item i by
user j. θ represents a global item difficulty, while θi
is an item-specific difficulty for item i.

observations:

1. Positive impact of delay term: Incorporating a delay term
improves the performance of the memory model. In Fig.
2, the solid lines (with delay term) and dashed lines (with-
out delay term) of same color encode comparable models
with and without the delay term (model 5 vs. 7, 8 vs. 9,
10 vs. 12, 13 vs. 14).

2. Use of item-specific difficulties: Item-specific difficulties
θi outperform global item difficulty θ for lower decks
(qij ≤ 2) and higher decks (qij > 5), but the global dif-
ficulty performs better for intermediate decks (model 5
vs. 10, 8 vs. 13); in Fig. 2, compare the solid cool colors
(models with θ) to solid warm colors (models with θi).

3. Leitner position vs. number of reviews: Setting the mem-
ory strength s to be equal to the Leitner deck position
qij performs better than setting it to be proportional to
the number of past reviews nij , which in turn is better
than using a constant s; see Fig. 3 (model 8 vs. 5-6, and
13 vs. 10-11).

4. Performance w.r.t. benchmark models: Exponential for-
getting models that include the delay term (models 5, 8,
10, and 13) perform comparably to 1PL-IRT (model 3),
which is the best-performing benchmark model; in Fig.
2, compare the solid black line (model 3) to the other
solid lines (models 5, 8, 10, and 13).

Based on these observations, our model of the Leitner sys-
tem uses the following exponential forgetting curve:

P[recall] = exp (−θ · di/qi), (2)
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Model 3: φ(θj − βi)
Model 5: exp (−θ · dij/nij)
Model 7: exp (−θ/nij)
Model 8: exp (−θ · dij/qij)
Model 9: exp (−θ/qij)

Model 10: exp (−θi · dij/nij)
Model 12: exp (−θi/nij)
Model 13: exp (−θi · dij/qij)
Model 14: exp (−θi/qij)

Figure 2: To evaluate the memory models’ ability to
predict outcomes in the Leitner system, validation
AUC is computed for separate bins of data that con-
trol for an item’s position qij in the Leitner system.
The error bars show the standard error of validation
AUC across the ten folds of cross-validation. Each
curve corresponds to a row in Table 2. We have in-
cluded only the best-performing benchmark model,
1PL-IRT (model 3), to reduce clutter.

Figure 3: To compare the three memory strength
models s = nij, s = 1, and s = qij, we compute AUCs
for the full data set (instead of separate bins of data,
as in Fig. 2). The box-plots show the spread of vali-
dation AUC across the ten folds of cross-validation,
and the orange circles show AUC on the test set.

where for item i, di is the time since last reviewed, qi is its
current deck in the Leitner system, and θ is the global diffi-
culty. The choice of the former two parameters follows from
observations 3 and 4. The choice between using θi or θ is
less clear from the data, and we settle on the latter due to
considerations of practicality (θi may be unknown and/or
difficult to estimate) and mathematical tractability. We dis-
cuss extensions of our model to using θi in later sections.



3. A STOCHASTIC MODEL FOR SPACED
REPETITION SYSTEMS

Based on the memory model developed in the previous
section (as summarized in Eqn. 2), we now present a stochas-
tic model for a spaced repetition system, and outline how
we can use it to design good review scheduling policies. We
note again that all existing schemes for assigning review fre-
quencies to decks in the Leitner system, and in fact, in all
other spaced repetition systems, are based on heuristics with
no formal optimality guarantees. One of our main contri-
butions is to provide a principled method for determining
appropriate schedules for spaced repetition systems.

We focus on a regime where the learner wants to memorize
a very large set of items – in particular, the number of avail-
able items is much larger than the potential amount of time
spent by the learner in memorizing them. A canonical exam-
ple of such a setting is learning words in a foreign language.
From a technical point of view, this translates to assuming
that new items are always available for introduction into the
system, similar to an open queueing system (i.e., one with
a potentially infinite stream of arrivals). Moreover, this al-
lows us to use the steady-state performance of the queue as
a measure of performance of the scheduler as an appropri-
ate metric in this setting. We refer to this as the long-term
learning regime.

As mentioned before, our model is based on the Leitner
system [13], one of the simplest and oldest spaced repetition
systems. It comprises of a series of n decks of flashcards,
indexed as {1, 2, . . . , n}, where new items enter the system
at deck 1, and items upon being reviewed either move up
a deck if recalled correctly or down if forgotten. In prin-
ciple, the deck numbers can extend in both directions; in
practice however, they are bounded both below and above
– we follow this convention and assume that items in deck
1 are reflected (i.e., they remain in deck 1 if they are incor-
rectly reviewed), and all items which are recalled at deck n
(which in experiments we take as n = 5), are declared to be
‘mastered’ and removed from the system. For simplicity of
exposition, we also assume that the difficulty parameter θ is
the same for all items (i.e., model 8 in Table 2), but we will
discuss later how to allow for item-specific difficulties (i.e.,
model 13 in Table 2).

3.1 The Leitner Queue Network
We model the dynamics of flashcards in an n-deck Leitner

system using a network of n queues, as depicted in Fig. 4.
Formally, at time t, we associate with each deck k the vector
Sk(t) = (Qk(t), {Tk,1(t), Tk,2(t), . . . , Tk,Qk (t)}), where Qk is
the number of items in the deck at time t, and Tk,j < t is the
time at which the jth item in deck k first entered the system
(note that the times are sorted). A new item is introduced
into the system at a time determined by the scheduler – it
is first shown to the user (who we assume has not seen it
before), and then inserted into deck 1.

We assume that the learner has a review frequency budget
(e.g., the maximum rate at which the user can review items)
of U , which is to be divided between reviewing the decks as
well as viewing new items. Formally, we assume that review
instances are created following a Poisson process at rate U .
Our aim is to design a scheduler which at each review instant
chooses an item to review. When a deck is chosen for review,
we assume that items are chosen from it following a FIFO

new items!

mastered items!

1! 2! 3! 4! 5!

Figure 4: The Leitner Queue Network: Each queue
represents a deck in the Leitner system. New items
enter the network at deck 1. Green arrows indicate
transitions that occur when an item is correctly re-
called during review, and red arrows indicate tran-
sitions for incorrectly recalled items. Queue k is
served (i.e., chosen for review) at a rate µk, and se-
lects items for review in a FIFO manner.

discipline. When an item comes up for review, its transition
to the next state depends on the recall probability, which
depends on the deck number and delay (i.e., time elapsed
since the last review of that item). In particular, at time t,
for any deck k, let Dk = t− Tk,1 denote the delay (i.e., the
time elapsed since that item was last reviewed) of the head-
of-the-line (HOL) item in deck k. Then, using the memory
model from Eqn. 2, we have that upon reviewing the HOL
item from deck k (for k ∈ {1, 2, 3, . . . , n− 1}), its transition
follows:

P[k → k + 1] = exp (−θ ·Dk/k)

P[k → max{k − 1, 1}] = 1− exp (−θ ·Dk/k)

Note that items in deck 1 return to the same deck upon
incorrect recall. Finally, items coming up for review from
deck n exit the system with probability exp (−θ ·Dn/n) (i.e.,
upon correct recall), else transition to deck n−1. We define
the learning rate λout to be the long-term rate of mastered
items exiting from deck n, i.e.:

λout = lim
T→∞

1

T
·
∣∣{Items mastered in interval [0, T ]}

∣∣
The aim of a scheduling policy is to maximize λout.

Given any scheduling policy that depends only on the
state S(t) = (S1(t), S2(t), . . . , Sn(t)), it can be easily verified
that S(t) forms a Markov chain. The most general scheduler-
design problem is to choose a dynamic state-dependent sched-
ule, wherein review instances are created following a Poisson
process at rate U , and at each review instant, the scheduler
defines a map from the state S(t) to a control decision which
involves choosing either to introduce a new card, or a deck
from which to review an item. Analyzing such a dynamic
schedule is difficult as the state space of the system is very
high dimensional (in fact, it is infinite dimensional unless we
impose some restriction on the maximum queue size). How-
ever, we can simplify this by restricting ourselves to static
scheduling policies: we assume that new items are injected
into deck 1 following a Poisson process with rate λext (hence-
forth referred to as the arrival rate), and for each deck k,
we choose a service rate µk, which represents the rate at



which items from that deck come up for review. We need to
enforce that the arrival rate λext and deck service rates to-
gether satisfy the user’s review frequency budget constraint,
i.e., λext +

∑
k µk ≤ U

2.
Restricting to static schedulers greatly reduces the prob-

lem dimensionality – the aim now is to choose λext, {µk}k∈[n]
so as to maximize the learning rate λout. We henceforth re-
fer to this system as the Leitner Queue Network. The use
of such static policies is a common practice in stochastic
control literature, and moreover, such schedules are com-
monly used in designing real Leitner systems (although the
review rates are chosen in a heuristic manner). However,
although the above model is potentially amenable to simu-
lation optimization techniques, a hurdle in obtaining a more
quantitative understanding is that the Markov chain over
S(t) is time-inhomogeneous, as the transition probabilities
change with t. In the next section, we propose a heuristic
approximation that lets us obtain a tractable program for
optimizing the review schedule.

3.2 The Mean-Recall Approximation
The stochastic model in Section 3.1 captures all the im-

portant details of the Leitner system – however, its time-
inhomogenous nature means that it does not admit a closed-
form program for optimizing the review schedule. In this
section, we propose an approximation technique for the Leit-
ner Queue Network, under which the problem of choosing an
optimal review schedule reduces to a low-dimensional deter-
ministic optimization problem. Simulation results in Section
3.3 (see Fig. 6) suggest that the two models match closely
for small arrival rates. We note however that this approxi-
mation is essentially a heuristic, and obtaining more rigor-
ous approximations for the proposed Leitner Queue Network
model is an important topic for future work.

The main idea behind converting the model in Section
3.1 to a time-homogeneous model is that for small values
of λ, for which the system appears stable (i.e., the total
number of packets in the system does not blow up), then
each Leitner deck k behaves similarly to an M/M/1 queue
with service rate µk (chosen by the scheduler), and some
appropriate input rate λk. Recall that for an M/M/1 queue
with input rate λ and service rate µ, the total sojourn time
for any packet is distributed as Exponential(µ − λ) (see
[11]). Based on this, we assume that for an item from deck
k coming under review, the recall likelihood is given by :

P[Recall| Deck k] = E
[
e−

θ
k
·Dk
]

=
µk − λk

µk − λk + θ/k
(3)

The above expression follows from the moment generating
function of the exponential distribution. We henceforth refer
to this as the mean-recall approximation.

Formally, we define the mean-recall approximation as fol-
lows: Suppose we choose a static schedule λext, {µk}k∈[n]
(with λext < µ1), and in addition choose input rates λk < µk
at each deck. Moreover, suppose the probability Pk that an
item from deck k is recalled correctly upon review is given by
Eqn. 3 3. Finally, we assume the arrival rates {λk} satisfy

2In practice, this corresponds to the following: for each re-
view instance, with probability µk

λext+
∑
k µk

, we review the

oldest item in deck k; else, we introduce a new item.
3One way to view this is that for each item in deck k coming
up for review, we ignore the true delay Dk and independently

the following flow-balance equations:

λ1 = λext + (1− P1)λ1 + (1− P2)λ2

λi = Pi−1λi−1 + (1− Pi+1)λi+1 , for i ∈ {2, 3, . . . , n− 1}
λn = Pn−1λn−1,

Under the above assumptions, the Leitner Queue Network
is a Jackson network of M/M/1 queues Qk [11, 12], with
arrival rate λk and service times {µk}, and from Jackson’s
theorem, we have that all queues are ergodic, and in steady-
state, for each deck k, the sojourn time Dk is indeed dis-
tributed as Exponential(µk−λk). Moreover, ergodicity also
gives that the learning rate λout is the same as the external
injection rate λext. Putting everything together, we get the
following static planning problem:

Maximize
{µk}nk=1

λext (4)

Subject to U ≥ λext +

n∑
k=1

µk,

λ1 = λext + (1− P1)λ1 + (1− P2)λ2,

λk = Pk−1λk−1 + (1− Pk+1)λk+1 , for k 6=1,n,

λn = Pn−1λn−1,

Pk =
µk − λk

µk − λk + θ/k
∀k ∈ [n],

0 ≤ λk ≤ µk ∀k ∈ [n],

Thus, as desired, the mean-recall approximation helps con-
vert the stochastic control problem of designing an opti-
mal review schedule to a low (O(n)) dimensional, deter-
ministic optimization problem. Now, we can use a nonlin-
ear solver (e.g., IP-OPT) to solve the static planning prob-
lem. Note that our problem is unusual compared to typ-
ical network control problems, as the routing probabilities
depend on the service rates µk. Also, note that ergodic-
ity of the system is critically dependent on the conditions
λk < µk ,∀k ∈ {1, 2, . . . , n} – if, however, one or more of
these do not hold, then the resulting queue length(s) (i.e.,
deck sizes), and thus, the delays between reviews for items
in that deck, grow unbounded for the decks for which the
condition is violated. Moreover, since items move to lower
decks upon being incorrectly recalled, choosing a high in-
jection rate should result in items building up in the lowest
deck. We verify these qualitative observations through ex-
periments in Section 4.

3.3 Features of Optimal Leitner Schedules
We now explore the properties of the optimal review sched-

ule for the Leitner Queue Network under the mean-recall
approximation. The main qualitative prediction from our
model is the existence of a phase transition in learning out-
comes: Given a schedule {µk}, there is a threshold λt s.t.
for all λext > λt, there are no feasible solutions {λk} sat-
isfying Eqn. 4. Moreover, if λext > λt, then the lowest
Leitner deck (i.e., Q1) experiences packet accumulation and
delay blow-up, and thus the learning rate λout goes to 0. In
Fig. 5, we simulate a review session with 500 reviews and 50
unique items for different values of λext. We observe that a
sharp phase transition indeed occurs as the arrival rate is in-

generate D̂k ∼ Exponential(µk−λk), which is then used to
determine the recall probability Pk.
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Figure 5: Phase transition in learning: Average
learning rate λout vs. arrival rate λext in the Leit-
ner Queue Network with clocked delays, for a ses-
sion of 500 reviews over 50 items. We set number of
decks n = 5, review frequency budget U = 0.1902, and
global item difficulty θ = 0.0077. The dashed verti-
cal line is the predicted phase transition threshold
under the mean-recall approximation.

creased: throughput initially increases linearly with arrival
rate, then sharply decreases.

The simulation in Fig. 5 is for the Leitner Queue Network
with actual (or clocked) delays, i.e., item routing is based on
actual times between reviews. The dotted line indicates the
phase transition threshold obtained under our mean-recall
approximation (Eqn. 4), which appears to be a lower bound
(i.e., a conservative estimate) for the true phase transition
point for review sessions of moderate length. Fig. 6 verifies
our intuition that the mean-recall approximation performs
well for small values of λext. Obtaining more rigorous guar-
antees on the approximation remains an open question.

The above simulations suggest that the mean-recall ap-
proximation gives a good heuristic for optimizing the learn-
ing rate. Moreover, the tractability of the resulting opti-
mization program (Eqn. 4) lets us investigate structural
aspects of the optimal schedule under the mean-recall as-
sumption. In Fig. 7, we see that the optimal schedule
spends more time on lower decks than on higher decks (i.e.,
µk ≤ µk+1 ∀ k). This is partly a result of the network topol-
ogy, where items enter the system through deck 1 and exit
the system through deck n. However, in Fig. 8 we ob-
serve that the Leitner Queue Network also increases the ex-
pected delay between subsequent reviews as an item moves
up through the system. Note that longer review intervals
does not follow from decreasing µk, as the (steady-state)
deck sizes can be different, as is indeed the case (see Fig. 9).
We note here that there is empirical support in the literature
for expanding intervals between repetitions [5].

Finally, Fig. 10 and 11 show how the maximum achievable
learning rate depends on the general difficulty of items, and
the user’s review frequency budget U . The convexity of
the latter plot is encouraging, as it suggests that there are
increasing returns (for lower U) as the user increases their
budget.

3.4 Extension to item-specific difficulties
The assumption that all items have the same difficulty θ
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Figure 6: The mean-recall approximation: Average
learning rate λout vs. arrival rate λext, for 500 re-
views over 50 items. We set number of decks n = 5,
review frequency budget U = 0.1902, and global item
difficulty θ = 0.0077. The green curve is generated
using clocked delays, while the blue curve uses the
mean-recall approximation. The λout = λext line
(red dashed curve) is the steady-state λout under the
mean-recall approximation.

can be relaxed by discretizing difficulties into a fixed num-
ber of bins b, and creating b parallel copies of the network.
We now have b parallel Leitner Queue Networks, coupled
via the budget constraint which applies to the sum of ser-
vice rates across the networks for each θ. We can assume
that the θi are known a priori (e.g., from log data or expert
annotations). To understand the effect of different θi, we
compare the optimal schedule for different θi (but using the
same budget U) in Fig. 12. The result is interesting, because
to the best of our knowledge, there is little understanding
of how the user should adjust deck review frequencies when
the general difficulty of items changes. Fig. 12 suggests
that when items are generally easy, the user should spend
a roughly uniform amount of time on each deck; however,
when items are of higher general difficulty, the user should
spend more time on lower decks than higher decks.

4. EXPERIMENTAL VALIDATION
To empirically test the fidelity of the Leitner Queue Net-

work as a model for spaced repetition, we perform an exper-
iment on Amazon Mechanical Turk (MTurk) involving par-
ticipants memorizing words from a foreign language. Our
study is designed to experimentally verify the existence of
the phase transition (shown in Fig. 5), the primary qualita-
tive prediction made by our model.

4.1 Experiment Setup
A total of 331 users (‘turkers’) on the MTurk platform

were solicited to participate in a vocabulary learning task.
At the beginning of the task, vocabulary used in the task
was selected randomly from one of two categories: Japanese
(words) and American Sign Language (animated gestures).
Items for the experiment were sampled from the list of com-
mon words in both languages 4. Each task was timed to last

4https://en.wiktionary.org/wiki/Appendix:1000 Japanese
basic words for Japanese and http://www.lifeprint.com/

https://en.wiktionary.org/wiki/Appendix:1000_Japanese_basic_words
https://en.wiktionary.org/wiki/Appendix:1000_Japanese_basic_words
http://www.lifeprint.com/asl101/gifs-animated/
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Figure 7: Optimal review schedule {µk}k for n = 20,
U = 1, θ = 0.01
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Figure 8: Expected delays 1/(µk−λk) under optimal
schedule for n = 20, U = 1, θ = 0.01.
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Figure 9: Expected queue size λk/(µk − λk) under
optimal schedule for n = 20, U = 1, θ = 0.01. The
kinks at the boundaries, in this and the previous
plot, arise from having a bounded number of decks.
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Figure 10: Variation in maximum learning rate λ∗ext
with item difficulty θ, for n = 20, U = 1.
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Figure 11: Variation in learning rate λ∗ext with re-
view frequency budget U for n = 5, θ = 0.01. Note
the convexity (hence, increasing returns) for low U .
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Figure 12: Optimal review schedule {µk}k for n = 20,
U = 1 and varying item difficulties θ.



Figure 13: Screenshot of our Mechanical Turk inter-
face : The user sees a word in Japanese (not shown)
and enters a guess. The card is then flipped to re-
veal the word’s meaning in English (shown above),
and the user then assesses herself.

15 minutes, and turkers were compensated $1.00 for com-
pleting the task regardless of their performance. The task
used the interface depicted in Fig. 13: a flashcard initially
displaying the item in the foreign language (either word or
gesture), and a pair of YES/NO buttons to collect input
from the user in response to the question, “Do you know
this word?”. If the user selected YES, she was then asked
to type the translation of the word in English. Once the
word was entered, the flashcard was “flipped”, revealing the
correct English word. The user was then asked to self-assess
their correctness on a scale of 1 (completely wrong) to 4
(perfect). Following the submission of the rating, the next
card was sampled from the deck. In all our experiments, we
consider a self-assessment score of 3 (almost perfect) or 4
(perfect) as a “pass”, and all other scores as a “fail”.

At the beginning of each task, each turker was assigned
to one of the 11 conditions corresponding to the arrival rate
(λext) of new items: [0.002, 0.004, 0.010, 0.015, 0.020, 0.023,
0.029, 0.050, 0.076, 0.095, 0.11, 0.19] (items per second).
The resulting data set consists of a total of 77, 034 logs,
331 unique users, 446 unique items, an overall recall rate of
0.663, a fixed session duration of 15 minutes, and an average
session length of 171 logs, where each log is a tuple (turk-
erID, itemID, score, timestamp). We set deck review rates

to µk ∝ 1/
√
k – this roughly follows the shape of the opti-

mal allocation in Fig. 7. We note that choosing an optimal
scheduler is not essential for our purpose of observing the
phase transition – moreover, we cannot optimize the review
rates µk ex ante as we do not know the item difficulty θ or
the review budget U . During the experiments, we set the
number of decks in the system to n = ∞, so items never
exit the system during a review session. Items incorrectly
recalled at deck 1 are ‘reflected’ and stay in deck 1. In our
post-hoc analysis of the data, we consider an item to be
‘mastered’ if its final position is in deck 6 or greater.

We estimate the empirical review budget U as (average
number of logs in a session) / (session duration), and the
empirical item difficulty θ using maximum-likelihood esti-
mation. We measure throughput λout as (average number
of items mastered in a session) / (session duration).

asl101/gifs-animated/ for American Sign Language
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Figure 14: The exit rate λout vs. arrival rate λext,
where number of decks n = 5, review frequency bud-
get U = 0.1902, and global item difficulty θ = 0.0077.
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Figure 15: The number of items that finish in each
deck vs. arrival rate λext, where number of decks n =
5, review frequency budget U = 0.1902, and global
item difficulty θ = 0.0077.
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Figure 16: The fraction of items seen during a ses-
sion that finish in each deck for different arrival
rates λext, where number of decks n = 5, review fre-
quency budget U = 0.1902, and global item difficulty
θ = 0.0077. Deck 6 refers to the pile of mastered
items.
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4.2 Results
Fig. 14 overlays the empirical learning rate from the

MTurk data for each arrival rate condition on the learning
rate curve for the simulated Leitner Queue Network (same
as Fig. 5) using the parameter values for θ and U measured
from the MTurk data (see caption of Fig. 5 for details).
The simulated and empirical curves are in close agreement;
in particular, the MTurk data shows the phase transition in
learning rate predicted by our theoretical model.

In addition to computing the observed throughput for the
various arrival rates in the MTurk data, we compute the av-
erage distribution of items across the five decks and the pile
of mastered items at the end of a session. This gives insight
into where items accumulate in unstable regimes. Fig. 15
illustrates the same phase transition observed earlier: as the
arrival rate increases, we first see an increase in the number
of mastered items. However, as the arrival rate increases
past the optimum, relatively fewer items are mastered and
relatively more items get ‘stuck’ in deck 1. Intuitively, the
user gets overwhelmed by incoming items so that fewer and
fewer items get reviewed often enough to achieve mastery.
Fig. 15 and 16 match the behavior suggested by our queue-
ing model: for injection rates higher than the threshold, the
number of items in deck 1 blows up while the other decks
remain stable.

5. CONCLUSION AND OPEN QUESTIONS
Our work develops the first formal mathematical model for

reasoning about spaced repetition systems that is validated
by empirical data and provides a principled, computation-
ally tractable algorithm for flashcard review scheduling. Our
formalization of the Leitner system suggests the maximum
speed of learning as a natural design metric for spaced rep-
etition software; using techniques from queueing theory, we
derive a tractable program for calibrating the Leitner system
to optimize the speed of learning. Our queueing framework
opens doors to leveraging an extensive body of work in this
area to develop more sophisticated extensions. To inspire
and facilitate future work in this direction, we release (1) all
model and evaluation code, (2) framework code for carrying
out user studies, and (3) the data collected in our Mechanical
Turk study. The data and code for replicating our experi-
ments are available online at http://siddharth.io/leitnerq.

Our work suggests several directions for further research.
The primary follow-up is to obtain a better understanding
of the Leitner Queue Network; in particular, better approx-
imations with rigorous performance guarantees. Doing so
will allow us to design better control policies, which ideally
could maximize the learning rate in the transient regime.
The latter is critical for designing policies for cramming [16],
a complementary problem to long-term learning where the
number of items to be learnt is of the same order as the
number of reviews. Next, our queueing model should be
modified to incorporate more sophisticated memory models
that more accurately predict the effect of a particular re-
view schedule on retention. Finally, there is a need for more
extensive experimentation to understand how closely these
models of spaced repetition apply to real-world settings.
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