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ABSTRACT
Any learning algorithm for recommendation faces a fundamental
trade-off between exploiting partial knowledge of a user’s interests
to maximize satisfaction in the short term and discovering addi-
tional user interests to maximize satisfaction in the long term. To
enable discovery, a machine learning algorithm typically elicits
feedback on items it is uncertain about, which is termed algorithmic
exploration in machine learning. This exploration comes with a cost
to the user, since the items an algorithm chooses for exploration
frequently turn out to not match the user’s interests. In this paper,
we study how users tolerate such exploration and how presentation
strategies can mitigate the exploration cost. To this end, we conduct
a behavioral study with over 600 people, where we vary how algo-
rithmic exploration is mixed into the set of recommendations. We
find that users respond non-linearly to the amount of exploration,
where some exploration mixed into the set of recommendations
has little effect on short-term satisfaction and behavior. For long-
term satisfaction, the overall goal is to learn via exploration about
the items presented. We therefore also analyze the quantity and
quality of implicit feedback signals such as clicks and hovers, and
how they vary with different amounts of mix-in exploration. Our
findings provide insights into how to design presentation strategies
for algorithmic exploration in interactive recommender systems,
mitigating the short-term costs of algorithmic exploration while
aiming to elicit informative feedback data for learning.

CCS CONCEPTS
• Information systems→ Recommender systems; •Human-
centered computing → Interaction design theory, concepts and
paradigms;
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1 INTRODUCTION
Recommender systems are an integral component of many websites
including e-commerce destinations, news content hubs, and movie
streaming portals. Recommender systems help people navigate a
large space of options [33] and can both increase user satisfaction
as well as achieve other business goals [16]. For the continuous
improvement of recommender systems, exploration forms a key
component of how learning algorithms obtain coverage of a user’s
possible interests. More specifically, algorithmic exploration de-
scribes a concept in online learning [35], where algorithms learn
sequentially, and need to try out new actions or options – explore
them – to achieve good coverage of the learning domain in the
long run. Algorithmic exploration not only helps with respect to
a single user, but can also improve other users’ recommendations,
for example, through exploration of newly listed items [1, 2]. More-
over, the feedback collected through exploration can be used to
counterfactually evaluate new recommender systems [4, 28, 39].

Although exploration is of great importance for many algorith-
mic goals, exploration has the potential to lead to user dissatisfac-
tion, since the items chosen for exploration frequently turn out to
not match the user’s interests. This raises the following key ques-
tion: what is the overall negative impact of exploration on user
satisfaction and how can it be mitigated while ensuring a high level
of quality and quantity of the resulting feedback data?

In this paper, we study the question of how to best explore from
two perspectives. First, we study in a systematic way how the
amount of exploration affects short-term user satisfaction. In par-
ticular, a certain number of items to explore are mixed into each
impression of personalized recommendations – a process we call
mix-in exploration. This allows us to examine different levels of
exploration among the set of recommendations, starting with a
base strategy that does no exploration and then gradually moving
to a strategy that recommends items purely for the purpose of
exploration. By conducting a user study on Amazon Mechanical
Turk with over 600 participants, we find that people are able to per-
ceive changes from different levels of exploration, but that changes
affect user-reported measures in a non-linear way. In particular,
we find that mixing only a few exploratory items into each per-
sonalized recommendation impression does not change reported
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user satisfaction significantly. However, exceeding a threshold of
exploration then sharply impacts user perception. Surprisingly, we
could not find any significant impact of exploration on peoples’
final choices, indicating that people are quite resilient to irrelevant
recommendations and that they find ways to work around them.

Second, as a step towards learning, we examine quantity and
quality of feedback signals under different levels of exploration.
We find that larger amounts of exploration drives down feedback
quantity. Overall, we find that among the signals we studied both
shortlisting events as well as hovering events provide the most
informative feedback signals.

In summary, we find that people are tolerant with respect to
smaller amounts of exploration, and that limiting exploration is also
important for ensuring good feedback quantities. These findings
indicate that for improving recommendation systems in practice,
it is preferable to mix a limited amount of exploration into every
impression – as opposed to having a few impressions that do pure
exploration. Also, our study of feedback signals can further guide
the design of learning algorithms. To the best of our knowledge,
this is the first study to measure the user-centric cost of exploration
in a personalized setting.

2 RELATEDWORK
Our work is related to ideas from various areas, such as user-centric
evaluation of recommender systems, understanding of implicit
feedback, and interactive recommender systems.

We mainly follow the user-centric paradigm [26, 30, 36] for the
evaluation of recommender systems in this paper. We divide user-
centric evaluation into rating-based and task-based studies. Studies
in the first category present a list of recommendations to users
that they need to rate, whereas studies in the second category ask
people to actually use a recommender system as part of a user task.
The study in our paper falls into the second category.

Cosley et al. [7] conducted one of the first rating-based studies
in recommendation, finding that user satisfaction decreases if a rec-
ommender shows incorrect star ratings. A study in [8] compared a
number of popular recommendation algorithms. The authors found
that a static popularity-based method was among the methods with
highest satisfaction. Ge et al. [12] mix-in diverse items into recom-
mendation lists. They found that inserting these diverse items did
not significantly impact user satisfaction – however, the recom-
mendations were manually created and static. Most rating-based
studies, however, showed an increase in user satisfaction with an
increase in diversity [10, 44]. The problemwith rating-based studies
is that they provide no insight into how and whether recommenda-
tions would impact users in their tasks [41], a shortcoming that is
addressed by task-based studies.

One of the first task-based studies was done by Swearingen and
Sinha [40]. They found users to be hesitant to purchase new items
and hypothesize that having known items among the recommen-
dations increases the chance of users adopting novel items. We
were not able to see the latter effect for random mix-ins in our
study. Only a few task-based studies also examine feedback signals
along with user-centric measures. Cremonesi et al. [9] found dif-
ferent recommender algorithms to have no effect on metrics like
time-to-decision or the number of examined items. Jones and Pu

studied user satisfaction in music recommendation [24], and found
the number of recommended items that were liked to be predictive
of preference between systems, similar to shortlisting interactions
in our setting.

There has been substantially more work on understanding im-
plicit feedback signals in information retrieval (IR) [6, 11, 23, 31].
Clicks and dwell time are traditionally used as feedback signals
for learning algorithms in these settings. However, we found these
signals to be insufficient in quantity in our study, and recommend to
consider other signals, e.g., hover time. This issue has also spurred
some research in IR on alternative signals, such as cursor move-
ments [20] or scrolling [13].

Lastly, we present a general interface useful for many interactive
recommendation settings [17, 38]. In contrast, many interactive
systems discussed in the literature [17] provide domain-specific
controls for people, e.g., tags associated with a movie [3]. Our
interface only relies on items as input, making it applicable to a
wide range of domains.

In comparison to related work, ours is the first work to system-
atically vary the amount of exploration in a personalized recom-
mendation setting. Because of our experimental design, we are able
to study the impact of exploration on both user satisfaction and
feedback signals.

3 METHODOLOGY
We conducted a randomized between-subjects study with over
600 participants on Amazon Mechanical Turk. This allowed us to
collect data from a large and diverse set of people, an advantage
over traditional laboratory settings [29]. The user task in this study
consisted of picking a movie to watch from a large set of movies.
This task is an instance of what is often referred to as the Find Good
Items task [18], or One-Choice task [34]. Using movies gave us a
task domain that people were already familiar with; it is also of
high practical importance, and has a natural visual representation
via movie posters.

We evaluate different presentation strategies through an inter-
active recommender interface that updates automatically while
the user is browsing. This is in contrast to many other studies on
user-centric evaluation of recommender studies [8, 10, 12] where
users are exposed to recommendations that are only computed
once. Having the ability to serve recommendations interactively
has the following two benefits: (i) the recommendations are not
isolated responses, but can be evaluated with respect to the user
task, and (ii) we are able to observe feedback signals directly after
new recommendations have been made.

3.1 Interactive recommender interface
The general idea behind our interface is to base recommendations
on items that are marked as interesting during a session, similar to
e-commerce settings where further items are recommended after
initial items have been added to the basket. This setting is also often
referred to as session-based recommendation [19, 34], as opposed
to recommendation based on long-term preferences. To enable
interactivity, we update recommendations each time a user adds
items to a shortlist during a session, that is a temporary list of
candidates that the user is currently considering [34].



Figure 1: The interactive recommendation interface each
userwas presentedwith. The “Recommended for you” panel
was updated automatically each time a user added a movie
to the shortlist.

As Fig. 1 shows, there are three panels in the interface: the brows-
ing panel (bottom), the shortlist panel {5}, and the recommendation
panel {6}. The layout was motivated by the interfaces of common
online movie streaming services, such as Netflix, Hulu, or Ama-
zon. In the main panel, people can browse movies by using the
paging buttons ({2a}, {2b}), and can also filter the displayed movies
using facets {1}. They have the option of examining a movie fur-
ther by clicking on a poster of the movie, which opens a pop-up
with more information. They can add movies to the shortlist panel
by clicking on the plus button {3}, and make their final choice by
clicking on the download button {4}, and confirming their choice in
a prompt afterwards. Every time an item is added to the shortlist,
the recommendation panel {6} displays a new set of five recom-
mendations with a brief loading animation. Once a movie is shown
as a recommendation, it is blacklisted for the session and never
shown again to the user to avoid repetitiveness [43]. We do not
update recommendations if a user adds a recommended movie to
the shortlist to avoid accidentally dismissing any other interesting
recommendations.

3.2 Presentation strategies
In order to systematically test the effects of exploration on people,
we created a set of controlled presentation strategies that cover
the spectrum from no exploration to full exploration. We used the
following strategy for presenting items to explore, which we call
mix-in exploration: we insert a given number of items to explore
from an Explore strategy into the recommendations from a per-
sonalized Base strategy. Since there were five presentation slots
available, we had six different presentation strategies to cover all
cases: Base (B), Mix-1 (M-1), Mix-2 (M-2), Mix-3 (M-3), Mix-4 (M-4),
FullExplore (FE).

Full Explore
Recommender FE

Personalized
Recommender B

Shortlisted Movies Final 
Recommendations

Mixing

Candidates

Figure 2: In mix-in exploration, items to be explored are
mixed into items from a personalized recommender.

Fig. 2 shows schematically how mix-in exploration is performed
in the case of Mix-2. The personalized Base recommender (B) gen-
erates a list of candidates based on the set of movies that a user has
currently on her shortlist. For the final recommendation impression
that is shown to the user, items generated by the FullExplore rec-
ommender (FE) are then mixed-into the items of the personalized
recommender (B). The details for each strategy are provided below.

Base. This personalized content-based strategy finds the 50 most
similar movies for each movie in the shortlist, and re-ranks all can-
didates by popularity for familiarity. We also explored collaborative
filtering techniques, but found them to perform poorly for the small
sample sizes available to us. To compute the content-based simi-
larities, we project all tag vectors from the Tag Genome project
[42] into a 25-dimensional space via Singular Value Decomposition
for efficiency and use cosine similarities between those vectors.
Popularity here is defined as the number of ratings of three or
more stars for a movie in the MovieLens 1M dataset [15]. Ranking
the candidates by popularity showed improved user satisfaction in
our preliminary experiments over a method which did not re-rank
movies by popularity, a finding that is consistent with other studies
[8, 22].

FullExplore. Returns items to explore uniformly at random
from the inventory. We chose this method partly because this is
how many theoretically-motivated machine learning algorithms
explore (e.g., [27]), and partly because it represents the worst-case
for frequently missing the user’s interests.

Mix-i. Interweaves recommendations from Base and the Ran-
dom strategy, using i slots for FullExplore. It first samples i slots at
random to mitigate presentation bias effects and marks them to be
filled with recommendations from FullExplore. The remaining slots
will be filled with recommendations from Base. The slots are then
filled from left to right with the first movie from the corresponding
strategy that has also not already been chosen for another slot.

3.3 Movie inventory
Tomake our system similar to real-world movie streaming websites,
we populated it with data from OMDb1, a free and open movie
database. We only kept movies that were released after 1950 to
ensure a general level of familiarity. Furthermore, we only selected
movies that also appeared in the Tag Genome dataset [42], since
the latter dataset was used to make recommendations. After this
1http://omdbapi.com/



filtering step, 3470 movies remained in our inventory. In order to
have a reasonably attractive default ranking, we sorted all movies
first by year in descending order, and then by review score (IMDb
score), again in descending order. This means that people were
shown recent and highly-rated movies first in the browsing panel
by default.

3.4 Participants
We recruited 610 participants from Amazon Mechanical Turk, a
crowd sourcing platform. Crowd workers were required to be from
a US-based location, and to have an approval rate of at least 95%
on previous tasks. Moreover, to ensure that all participants had
a consistent experience and saw the same content on the screen,
we tested for their browser version and screen resolution. Their
median age was between 30 and 40 years as self-reported in the
survey. We offered a payment of $1. With an average completion
time of 8 minutes, this is an effective wage of $7.50 an hour which is
above the US Federal minimum wage. Participants were randomly
assigned one of the six presentation strategies as a treatment. From
the 610 completed user responses, we filtered out all sessions where
people reloaded the pagewith the interface, or shortlistedmore than
15 items since we found these sessions to show overall spamming
behavior. After this step, we were left with 577 sessions.

3.5 Study design
We gave participants the following instructions:

Imagine you are home alone and want to watch a movie.
Use the interface provided next to choose amovie to watch.
To make your final choice, click on the button with the
download icon next to a movie.

We chose the scenario above to keep the instructions as simple as
possible since any complications were at risk of being ignored by
the crowd workers.

After having read the instructions and having seen a short one-
minute video about how to use the interface, the participants were
taken to the recommendation interface in Fig. 1. After confirming
their final choice of movie, they were asked to complete a survey
that asked for their experience with the interface.

The survey questions posed to a user after they made their final
choice were adapted from existing user-centric frameworks [26, 30]
to the crowd sourcing setting [25]. In our survey, we chose questions
focusing on the following five properties of the recommendations:
quality, helpfulness, transparency, novelty, and choice satisfaction.
Except for one binary question, all questions were answered on a
5-point Likert scale from strongly disagree (0) to strongly agree (4).

4 USER SATISFACTION
In this section, we study how varying the amount of exploration
affects self-reported user outcome. The following research ques-
tions address different aspects of user outcome to the amount of
exploration:

(1) Do people perceive differences in the amount of exploration?
Besides recommendation accuracy, are any other properties
perceived as different?

(2) Can exploration interfere with helpfulness?

(3) How does exploration impact perceived transparency?
(4) Is the cost of exploration linear, i.e. do linear changes in the

amount of exploration also lead to linear changes in user
outcome?

(5) Does introducing exploration have a significant impact on
people’s final choices?

Table 1 shows the aggregated results over 577 user responses
(93-96 responses for each condition). The last column reports the
p-value of a one-way analysis of variance (ANOVA), testing for the
equivalence of means among all conditions. Furthermore, an aster-
isk indicates that a particular exploration strategy is significantly
different from Base (t-test, p < 0.05, Bonferroni-correction). To
test for trends, we also linearly regressed all survey responses with
ANOVA significance of p < 0.01 against the number of mix-ins
and found the slope to be significantly different from zero in all
cases with p < 0.01. Before turning to the research questions, we
will briefly discuss how people perceived their interaction with
the interface. We can see from the first two questions that user
responses are consistently positive across all conditions, indicating
that people did indeed enjoy interacting with the interface, and did
not feel stressed during the process. Participants also frequently
reported that they made use of the shortlist to keep track of their
current choices, independent of which exploration strategy was
used (question 3). This overall positive feedback is evidence that
the interface is on par with realistic settings and that our results
are not biased by a poor interface design.

4.1 Do people perceive differences?
One of the key questions of this paper and of the overall design of
this study is whether and how people are affected by the amount
of exploration. Knowing that people are able to find differences
between the conditions also indicates that our methodology is
sufficiently sensitive to the differences we aim to study. Moreover,
since we know the composition of each exploration strategy by
design, we can formulate a set of hypotheses to test.

For example, as the amount of exploration increases, we expect
people to perceive presentation strategies as less accurate and less
similar to their shortlisted items. Similarly, we expect people to
report an increase in novelty. As the scores of questions 4 and
5 in Table 1 show, these expectations indeed hold true – people
report both decreases in recommendation accuracy (“The recom-
mendations were a good fit for my taste") as well as decreases in
recommendation similarity to the shortlist (“The recommendations
were similar to the movies on the shortlist"). Moreover, people also
accurately report novelty of the recommendations as shown in the
responses to question 6 (“Most of the recommendationswere known
to me"). Also, question 6 shows that perceived novelty increases as
we mix in more exploration items.

Examining the responses to each of the three questions above
more closely, we can also see that user responses for Mix-4 and
FullExplore are significantly different from the Base strategy. In
fact, Likert scores fall off almost monotonically with an increasing
number of mixed-in items. Since we know the composition of each
presentation strategy by design, the findings above also serve as
validation for our study design – we were to able to successfully
match up the user responses with our initial hypotheses.



Conditions

Question B M-1 M-2 M-3 M-4 FE p

Interaction adequacy
1. I enjoyed selecting movies with this interface. 3.23 3.30 3.26 3.37 3.17 3.08 0.39
2. I was stressed out while selecting movies. 0.33 0.20 0.33 0.28 0.33 0.33 0.70
3. I used the shortlist to keep track of my current choices. 3.12 3.03 3.01 3.05 3.11 3.03 0.98

Accuracy
4. The recommendations were a good fit for my taste. 3.05 2.90 2.93 2.77 2.35* 2.03* <0.01
5. The recommendations were similar to the movies on the shortlist. 3.21 3.01 2.97 3.01 2.39* 2.17* <0.01

Novelty
6. Most of the recommendations were known to me. 2.89 2.80 2.69 2.58 2.38* 2.09* <0.01
7. My final choice is different from the movies I usually watch. 0.85 0.96 0.91 0.89 1.09 1.20 0.31
8. I have not watched my final choice before. [binary] 0.28 0.30 0.30 0.25 0.33 0.24 0.76

Helpfulness
9. I had a good idea of what I wanted to watch when I started. 1.81 1.89 2.03 1.99 2.07 1.57 0.12
10. The recommendations helped me determine what I was in the mood for. 2.76 2.69 2.64 2.62 2.08* 1.99* <0.01

Transparency
11. I understand why the system recommended me the movies that it did. 3.27 3.11 3.16 3.05 2.43* 2.37* <0.01
12. I was able to steer the recommendations into the right direction. 2.95 2.75 2.82 2.92 2.42* 2.07* <0.01

Choice Satisfaction
13. If I were to keep browsing, I’d find a movie that I’d prefer to my final choice. 2.44 2.54 2.41 2.35 2.49 2.56 0.82
14. I would watch my finally chosen movie, given the opportunity. 3.58 3.56 3.66 3.80 3.61 3.52 0.04
Table 1: Aggregated answers for all survey questions. Answers were on a likert scale from 0 (strongly disagree) to 4 (strongly
agree), except for question 8. The last column has the p-values for a one-way ANOVA.

4.2 Does exploration interfere with
helpfulness?

A good recommender system should ultimately help the user with
her decision. In fact, people are often not sure what to watch when
they start browsing for a movie as the responses to question 9 show
(“I had a good idea of what I wanted to watch when I started.").
Hence, it is important to understand whether exploration can ac-
tually change how helpful people perceive a system to be. As the
results for question 10 indicate (“The recommendations helped me
determine what I was in the mood for"), helpfulness is negatively
correlated with the amount of mixed-in exploration. Compared to
the Base strategy, both Mix-4 and FullExplore produced recommen-
dations that people perceived as significantly less useful.

4.3 Does exploration decrease transparency?
Another important property of a recommender system is trans-
parency, i.e. why a particular recommendation was made to the
user. For interactive recommendations, transparency may be even
more important since people’s recommendations are tied to their
actions. We asked participants for transparency in two directions.
In question 11, we asked for transparency in the traditional setting
(“I understand why the system recommended me the movies that it
did") [37], whereas in question 12 we targeted transparency in the
proactive setting (“I was able to steer the recommendations into
the right direction"). For both questions, we find that transparency
correlates negatively with the amount of exploration. Again, Mix-4
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Figure 3: Likert scores fall off in a non-linear way when ex-
ploration is increased.

and FullExplore were perceived to be significantly less transparent
than the Base recommender.

4.4 Are costs linear?
An interesting question is whether a linear increase in the number
of mixed-in items will cause a linear change in the Likert scores
of user responses. This is particularly important in order to under-
stand how an algorithm should explore, i.e. how many potentially
poor recommendations people are willing to tolerate. Fig. 3 gives
some insight into this question. It shows the relative decrease in



Likert scores compared to Base of all questions that had significant
differences under the ANOVA at p < 0.01, grouped together by
question number, and then sorted by the number of mixed-in items
within each group. The bar plot suggests that user responses parti-
tion the presentation strategies into two groups – one with Base
and Mix-1, Mix-2 and Mix-3; and one with Mix-4 and FullExplore.
As the statistical comparisons in Table 1 shows, this is indeed true.
Strategies in the last group are significantly different from Base. In
other words, scores are not statistically distinguishable from the
Base recommender with up to three mixed-in items, and there is a
sharp transition going to four or five items.

4.5 Does exploration affect final choices?
The goal of the user task was picking a movie that they would like to
watch. A natural question therefore to ask is how much exploration
impacts people’s final choices. Naively, one would think that since
we found decreases in helpfulness and accuracy with increased
levels of exploration, these losses would also carry over to choice
satisfaction. However, we did not find any significant differences
between the six different conditions at the p < 0.01 level for choice
satisfaction. Users were not more confident that they found the best
option as question 13 asked ("If I were to keep browsing, I’d find
a movie that I’d prefer to my final choice"). We were also unable
to find a significant effect on watch intention in question 14 at the
p < 0.01 level ("I would watch my finally chosen movie, given the
opportunity").

Even though we could not find any direct effects of exploration
on choice satisfaction, there could be effects on how novel the
choices are. As discussed earlier, we found significant differences
with respect to how novel people perceived the recommendations
(cf. question 6). To the extent that people actually adopt those novel
recommendations or explore more novel options themselves, we
should see changes in their final choices. However, we fail to show
any significant effects on the novelty of people’s final choices as
question 7 (“My final choice is different from the movies I usually
watch") and question 8 (“I have not watchedmy final choice before.")
show. Note that the options for question 8 were binary, with 0 (no)
and 1 (yes).We can also see from question 7 that people are reluctant
in general to choose something that would be outside their regular
taste profile as Likert scores are consistently low. Question 8 adds
even more support to this: Only 24-33% of people chose a movie
that they had never seen before.

4.6 Discussion
We found that people were not only aware of the accuracy of a rec-
ommender system, but were also able to assess its degree of novelty,
and whether it recommends items that are similar to the shortlist.
However, even though people were able to report these properties
accurately, it had little influence on their reported satisfaction with
their final choices. We found neither a significant effect of explo-
ration on overall choice satisfaction, nor on how novel people’s
final choices were. This implies that people still find ways to be
successful at their task, even when random exploration presents
less relevant items. This is similar to the finding that people are still
able to perform well in information-seeking tasks, despite poorer
search results [41].

Perhaps most notable for its implications for exploration cost,
the cost of exploration is non-linear. In particular, for every question
that showed a significant change with respect to the amount of ex-
ploration, there are only small statistically insignificant differences
in perceived quality up to three mixed-in items. This implies that
people are quite forgiving with respect to recommendation quality,
as long as they can find at least multiple relevant recommendations.
Practically, this suggests that when an algorithm needs to explore,
there is a low cost of inserting a limited number of new options.
While in our scenario, we found that people needed to have at least
two good recommendations among the five, it would be interesting
to see how this extends to more general cases. In the case of longer
lists, another study [12] showed that inserting four items into a list
of twelve recommendations for diversity also did not affect user
satisfaction significantly. However, it is unclear when exactly a
turning point occurs in this altered setting. Hence, future research
should try to gain a better understanding of how people judge lists
of recommendations, especially how the overall utility for a list is
composed from its individual parts.

5 THE INFORMATIVENESS OF FEEDBACK
In the last section, we looked at how we can minimize the cost of
exploration on the user side, and found that cost was minimal for
few mixed-in items per recommendation impression. However, it is
important to remember why we explore – we want to obtain more
information about a user’s preferences for future recommendations.
Hence, to be effective in this step, we need to ensure a high infor-
mativeness of feedback signals when exploring. To facilitate a more
fine-grained analysis, we define informativeness as the combina-
tion of two factors – signal quantity, i.e. how often do people give
feedback of a specific type, and signal quality, i.e. how well does
the feedback signal reflect the user preferences. So, when striving
for highly informative feedback, we need feedback signals to be
both abundant as well as indicative of user preferences.

To answer the question of how we can obtain the most informa-
tive feedback during exploration, we address the issues of signal
quality and quantity in the following two sections separately with
the following research questions:

(1) How does the amount of exploration affect feedback quan-
tity? Do different types of feedback behave differently?

(2) Which type of feedback provides the highest quality, i.e. is
best able to distinguish between the utility of items from
Base and FullExplore?

For the remainder of this section, we will employ the following
definitions for different types of feedback signals. An item was
examined when a user clicked on it, opening a pop-up window
with more details about the item. When a user added an item to
the shortlist via one of the plus buttons, we refer to this item as
shortlisted. Similarly, if the mouse cursor was inside an item card
(movie poster with the gray title box) for at least 0.5 seconds, we
call this item hovered over. Finally, if a user picked an item as his
or her final choice, we refer to it as chosen.

5.1 Feedback quantity
In this section, we look at how the amount of feedback is influ-
enced by exploration. As our goal is to improve learning through



Signal from Interactions Availability
rec. panel

examined rec. 0.15 9.7%
shortlisted rec 0.94 38.1%
hovered rec. 2.60 62.4%
chosen rec. 0.30 30.0%

Table 2: Feedback quantity varies largely by signal type;
with hovering being the most frequent one. Availability is
defined as the fraction of sessions in which the signal oc-
curred.

Signal from
rec. panel

Conditions

B M-1 M-2 M-3 M-4 FE p

examined rec. 0.25 0.14 0.09 0.09 0.12 0.19 0.40
shortlisted rec. 1.14 1.15 1.32 1.06 0.58* 0.34* <0.01
hovered rec. 3.04 2.72 2.90 2.62 2.46 1.87 0.25
chosen rec. 0.39 0.29 0.37 0.33 0.28 0.16* <0.01
Table 3: Mean number of interactions with recommenda-
tions. The last column contains the p-values for a one-way
ANOVA.

recommendations, we restrict our analysis to interactions with the
recommendation panel. We start our analysis of feedback quan-
tity with overall availability, averaged over all conditions. Table 2
shows the availability and themean number of interactions with the
recommendation panel across all conditions. For the interactions
column, we report the average number of interactions that a user
had of this type. To compute availability, we report the percentage
of sessions in which people had at least one interaction of a specific
type with the recommendation panel.

Disappointingly, people examined detailed information about
at least one movie recommendation in less than 10% of sessions.
However, in 38% of the sessions, we can observe that at least one
recommendation was added to the shortlist. With an average of 0.94
interactions per session, we expect 94 shortlisting interactions with
the recommendations panel in total on average for 100 sessions
(since some users shortlist multiple items in a session). The signal
with highest availability is hovering, which is present in 62% of all
sessions. Also, the number of item interactions for it is more than
twice as high as for shortlisting (2.60 vs. 0.93). One can also see
the general trend that less intrusive feedback signals (i.e. hovering,
shortlisting) are more common than more obtrusive signals (i.e.
examining). In 30% of all sessions, people chose their final item from
their recommendations as opposed to choosing it from the browsing
panel as the last row shows. However, this signal obviously comes
too late to influence session-based recommendation. It is important
though to note that Table 2 averages across all conditions, so the fact
that interaction scores are low is also due to suboptimal strategies.

We now analyze how signal quantity varies for different levels of
exploration. Table 3 reports the mean number of interactions under
each condition. Although not shown in the table, we did not find

significant differences in average time-to-decision (session length),
average total number of shortlisted movies, or in the average num-
ber of recommendations people were exposed to. Again, an asterisk
indicates significance with respect to Base using a t-test (p < 0.05,
Bonferroni correction). As Table 3 shows, the level of exploration
has a significant impact on feedback quantity in two cases. There is
a significant impact of exploration on both the number of shortlist
interactions, and the number of chosen items that came from the
recommendations. Both Mix-4 and FullExplore had significantly
fewer shortlisting interactions than Base. Interestingly, this group-
ing is consistent with what we found in our user-centric evaluation
in the last section. In the number of recommendations that were
also finally chosen by people, we only were able to find signifi-
cance between Base and FullExplore. However, neither the number
of hover interactions nor the number of examine interactions on
recommended items showed significant differences, although the
number of hover interactions seems to decrease with increasing
exploration.

5.2 Feedback quality
We now turn to analyze feedback quality. By construction, and
also from the results in Section 4, we know that the utility of the
Base strategy to people is higher on average than the utility of the
FullExplore strategy which chose items at random. This controlled
setting gives us the opportunity to see how this difference in av-
erage utility is reflected in implicit signals. This can help guide
the design of more sensitive online experiments as well as the
design of better learning algorithms. We define signal quality as
the ability of a signal to distinguish between the average utility
of items that came from Base and the average utility of items that
came from the FullExplore strategy. Note that we know how many
random items each strategy showed to a user, and also at which
positions they were shown. We define the utilityUπ (s ) of a strategy
π ∈ {Base, FullExplore} in session s as an average over all individ-
ual item utilities u (i, s ) of items i in the set I (π ) of items that a
strategy showed to the user:

Uπ (s ) =
1

|I (π ) |

∑
i ∈I (π )

u (i, s ).

The individual item utilities can encode various interaction signals,
for example, u (i, s ) could be a binary function indicating whether
a user examined item i in session s . We also hope to find UBase (s )
to be greater than UFullExplore (s ), again, since we know it is by
construction and from the user experiments. More formally, we
capture this in a win score

winBase (s ) =




1.0, ifUBase (s ) > UFullExplore (s )

0.5, ifUBase (s ) = UFullExplore (s )

0.0, otherwise.

Note that this is closely related to ranking interleaving in informa-
tion retrieval [31] where the utility functions capture the number
of clicks each strategy obtained.

Table 4 reports the average win score for different signal types.
Note that Base and FullExplore are omitted because they only
showed items from one strategy. We start our discussion by looking
at feedback quality in this setting only, ignoring all sessions in



Signal from
rec. panel

Conditions

M-1 M-2 M-3 M-4

Only sessions where signal available
examined rec. 0.80 1.00 0.86 0.55
shortlisted rec. 0.91* 0.96* 0.89* 0.70
hovered rec. 0.79* 0.82* 0.74* 0.67*

chosen rec. 0.96* 0.92* 0.87* 0.67

All sessions
examined rec. 0.53 0.54 0.53 0.51
shortlisted rec. 0.70* 0.72* 0.65* 0.56
hovered rec. 0.72* 0.72* 0.67* 0.62*

chosen rec. 0.63* 0.65* 0.62* 0.55
Table 4: Fraction of sessions where people interacted more
with Base items than with FullExplore items. An asterisk
indicates significance using a two-sided Bernoulli test (p <
0.05, Bonferroni correction).

which no interactions were available. Looking at the upper half of
Table 4, we can see that even though Base wins more in the case
of examine interactions, there is not enough evidence to conclude
that it is statistically different from a random preference between
Base and FullExplore. The problem here is feedback quantity, and
we will return to this shortly. Using hover interactions allows us to
reliably tell apart the utility of Base and FullExplore for all levels
of exploration. The signal quality seems lower than for shortlist-
ing, and final choosing, with hovering being able to distinguish
correctly between the utility of Base and FullExplore in around
67%-80% of sessions where a hovered recommendation existed or
in 62%-72% of all sessions. There also appears to be a decay from
Mix-3 to Mix-4 in signal quality; this could indicate that there are
also non-linear effects on item-specific feedback signals.

We can analyze signal quality and quantity together by looking
at data from all sessions in the bottom half. We can see now that
examined and finally chosen items are less indicative of strategy
preference (Base vs. FullExplore) since interactions of that type are
only available in a fraction of sessions (cf. Table 2). The best signal
types overall are shortlisting and hovering which, for conditions
including up to three mixed-in items, are able to correctly order
the utility of Base and FullExplore.

Although not reported in this paper, we ran a pilot experiment
where we reverse the Base strategy, and inserted one mixed-in item
from the reversed ranking. This ensured that the mixed-in item
was from a strategy which had higher quality than FullExplore. We
found the same effects as above – people still interacted more with
items from Base in their sessions.

5.3 Discussion
We saw that feedback quantity, for example the number of short-
listing operations on recommended items, is affected significantly
by different levels of exploration. Interestingly, looking at feedback
quantity for the latter signal recovered the same grouping of pre-
sentation strategies as the user-centric evaluation in the previous
section – Base, Mix-1, Mix-2, and Mix-3 were indistinguishable

statistically, but different from Mix-4 and FullExplore. Limiting the
amount of exploration is not only important for user satisfaction,
but also for feedback quantity, as both user satisfaction and feed-
back quantity are affected in a similar manner. It is plausible that
the reduced user satisfaction is at least partly responsible for the
decreases in feedback quantity.

As a step towards learning from the collected feedback, we
looked at which signals can best tell apart items from Base and
FullExplore. We found that both shortlisting as well as hovering
correctly rank Base over FullExplore. Clicks, as traditionally used
in learning-to-rank [31], were not helpful in this scenario since
there were simply too few of them available overall. Finding that
shortlisting is among the most informative signals adds further
support to the insight that learning algorithms can greatly benefit
from improved interface design where users are offered the right
incentives to interact [34].

Our results also indicate that an important but often overlooked
issue when designing learning algorithms is the interplay of feed-
back quality and quantity. For example, we found shortlisting feed-
back to have higher quality than hovering, but hovering to be
available in more sessions. Given these difference between feed-
back signals, learning algorithms could try to combine multiple
signal types to further improve overall signal quality and quantity
– for example, using hovering in addition to shortlisting feedback.

6 LIMITATIONS & FUTUREWORK
Our user study comes with certain limitations. First, participants
were paid to participate in the study, and may had different incen-
tives when interacting with the system, such as maximizing their
hourly wage. This might influence certain measures, such as the
time-to-decision. We did our best to minimize these effects, but it
still would be interesting to connect our results to user behavior in
the wild.

Another open question is to what extent interactivity plays a
role in how people perceive recommendations. Our results mirror
many findings from long-term user studies, however, there is more
research needed to study the precise connections between inter-
active recommendations and traditional static recommendations.
Understanding how these two approaches are connected could, for
example, allow us to improve evaluation for static recommenda-
tion as well. As an intermediate step, future work could combine
interactive recommendation with techniques for session-based rec-
ommendation [19, 21, 43].

Lastly, we only studied uninformed random exploration in this
paper which does not control for concepts like novelty. There is
an increasing amount of empirical evidence showing that novelty
can be perceived negatively by people [5, 10] and that popular rec-
ommendations are often preferred [5]. This motivates the need for
research onmore constrained presentation strategies, e.g., strategies
that expose people only to items they are likely to know [14, 32].

7 CONCLUSIONS
This paper explored the behavioral aspects of minimizing the cost of
exploration while ensuring a high quality and quantity of feedback
signals. Regarding the cost of exploration, our user study finds
that small amounts of mix-in exploration are tolerated well, while



larger amounts lead to a super-linear drop-off in user satisfaction
as well as to a decrease the quantity of feedback. This suggests
that algorithms should prefer moderate levels of exploration over
longer period of time over high levels of exploration over shorter
periods. We also examined different types of feedback with respect
to their quality, and found both shortlisting and hovering events to
provide the best overall signal. Our findings give practical advice
to interface designers as well as offer starting points for designing
learning algorithms using the right feedback signals.
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