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Abstract

This paper presents a method for learning a distance metric from rel-
ative comparison such as “A is closer to B than A is to C”. Taking a
Support Vector Machine (SVM) approach, we develop an algorithm that
provides a flexible way of describing qualitative training data as a set of
constraints. We show that such constraints lead to a convex quadratic
programming problem that can be solved by adapting standard meth-
ods for SVM training. We empirically evaluate the performance and the
modelling flexibility of the algorithm on a collection of text documents.

1 Introduction

Distance metrics are an essential component in many applications ranging from supervised
learning and clustering to product recommendations and document browsing. Since de-
signing such metrics by hand is difficult, we explore the problem of learning a metric from
examples. In particular, we consider relative and qualitative examples of the form “A is
closer to B than A is to C”. We believe that feedback of this type is more easily available
in many application setting than quantitative examples (e.g. “the distance between A and
B is 7.35”) as considered in metric Multidimensional Scaling (MDS) (see [4]), or absolute
qualitative feedback (e.g. “A and B are similar”, “A and C are not similar”) as considered
in [11].

Building on the study in [7], search-engine query logs are one example where feedback of
the form “A is closer to B than A is to C” is readily available for learning a (more semantic)
similarity metric on documents. Given a ranked result list for a query, documents that
are clicked on can be assumed to be semantically closer than those documents that the
user observed but decided to not click on (i.e. “A ek 1S closer to Begicr than Agicr, 1S to
Chroctick”)- In contrast, drawing the conclusion that “A .;;. and C,,ocric are not similar” is
probably less justified, since a C,,oc1icx high in the presented ranking is probably still closer
to A.zicr than most documents in the collection.

In this paper, we present an algorithm that can learn a distance metric from such relative
and qualitative examples. Given a parametrized family of distance metrics, the algorithms
discriminately searches for the parameters that best fulfill the training examples. Taking a
maximum-margin approach [9], we formulate the training problem as a convex quadratic



program for the case of learning a weighting of the dimensions. We evaluate the perfor-
mance and the modelling flexibility of the algorithm on a collection of text documents.

The notation used throughout this paper is as follows. Vectors are denoted with an arrow 7
where z; is the 7" entry in vector Z. The vector 0 is the vector composed of all zeros, and
T is the vector composed of all ones. #7 is the transpose of vector # and the dot product
is denoted by #7'¢. We denote the element-wise product of two vectors # = (z 1, ..., z,) %
and 7= (Y1, .o, yn) L @S T* 7T = (X1Y1, o0, Tnln) L.

2 Learning from Relative Qualitative Feedback

We consider the following learning setting. Given is a set X ;,:,, Of objects &; € RY. As
training data, we receive a subset P;,..;, Of all potential relative comparisons defined over
the set Xy,q:,,. Each relative comparison (i, j, k) € Pirgin With @, Z;, T € Xirain has
the semantic

@; is closer to Z; than &; is to Zj,.

The goal of the learner is to learn a weighted distance metric d z(-,-) from Py..;, and
Xirain that best approximates the desired notion of distance on a new set of test points
Xtests Xtrain N Xtest = 0. We evaluate the performance of a metric d (-, -) by how many
relative comparisons P;.; it fulfills on the test set.

3 Parameterized Distance Metrics

A (pseudo) distance metric d(Z, %) is a function over pairs of objects Z and i from some
set X. d(#, %) is a pseudo metric, iff it obeys the four following properties for all Z, ¢/, and
Z

d(#,@) =0, d(&y)=dy,¥), d&y§) >0, dZ 9 +diy,2)>dZ,72)
It is a metric, iff it also obeys d(Z, %) = 0 = ¥ = ¢.

In this paper, we consider a distance metric d 4w (Z, i) between vectors #, 7 € R param-
eterized by two matrices, A and V.

daw (&,§) = \/(F — §)T AW AT (& - ) &)

W is a diagonal matrix with non-negative entries and A is any real matrix. Note that the
matrix AW AT is semi-positive definite so that d 4w (#, 7) is a valid distance metric.

This parametrization is very flexible. In the simplest case, A is the identity matrix, I,
and d;.w (%, ) = /(T — NTIWIT(F —§) = /(£ — §)TW(Z — ) is a weighted, Eu-
clidean distance dy,w (Z, ) = \/>_; Wii(zi — i)

In a general case, A can be any real matrix. This corresponds to applying a linear transfor-

mation to the input data with the matrix A. After the transformation, the distance becomes
a Euclidean distance on the transformed input points A%, ATy

daw(E.§) = \/(F ~ )T AW (AT (7 - ) (2)

The use of kernels K (%, ) = ¢(Z)¢(y) suggests a particular choice of A. Let & be the
matrix where the i-th column is the (training) vector & ; projected into a feature space using



the function ¢(Z;). Then
do,w (6(%), 0(7)) = \/((sb(a?) — ()T )W (2T (¢(%) — 6(7))) ®3)

n
ZWii(K(fv fl) _K(_’a _’i))2 (4)
i=1
is a distance metric in the feature space.

4 An SVM Algorithm for Learning from Relative Comparisons

Given a training set Py..;n, Of n relative comparisons over a set of vectors X4, and
the matrix A, we aim to fit the parameters in the diagonal matrix W of distance metric
da,w(Z,7) so that the training error (i.e. the number of violated constraints) is minimized.
Finding a solution of zero training error is equivalent to finding a 1 that fulfills the fol-
lowing set of constraints.

V(i,j, k) € Perain : da,w (&5, T%) — da,w (75, 75) >0 ®)
If the set of constraints is feasible and a W exists that fulfills all constraints, the solution
is typically not unique. We aim to select a matrix AW A” such that d4 w (Z, %) remains
as close to an unweighted Euclidean metric as possible. Following [8], we minimize the
norm of the eigenvalues ||A||? of AW AT. Since ||A]|> = ||AW AT ||%, this leads to the
following optimization problem.

1

min §||AWAT||%

5. V(ij k) € Prnain: (71— B TAWAT(s — ) — (71— &) TAWAT(Z— 2) > 1
Wiy >0

—

Unlike in [8], this formulation ensures that d 4w (Z, %) is a metric, avoiding the need for
semi-definite programming like in [11].

As in classification SVMs, we add slack variables [3] to account for constraints that cannot
be satisfied. This leads to the following optimization problem.

. 1
min §||AWAT||%“ +C Y &k

i,7,k
s.t. V(Z,j,k) EPtrain: (fi—fk)TAWAT(fi—fk) — (fz—f])TAWAT(fZ—f]) Z 1- fz’jk
&ijk >0
Wii >0

The sum of the slack variables ¢;;;, in the objective is an upper bound on the number of
violated constraints.

All distances d 4w (Z, %) can be written in the following linear form. If we let & be the
diagonal elements of W then the distance d 4w can be written as

daw(@ ) = /(@ - HTHW(AT(E - )

_ \/u?T(ATa? — AT§) « (ATF — ATY) (6)

where x denotes the element-wise product. If we let A%-%i = (AT — ATa,) « (AT % —
AT 27.), then the constraints in the optimization problem can be rewritten in the following
linear form.

V(i,J,k) € Porgin : @T (A%070 — RT0k) > 1 — €1 @)
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Figure 1: Graphical example of using different A matrices. In example 1, A is the iden-
tity matrix and in example 2 A is composed of the training examples projected into high
dimensional space using an RBF kernel.

Furthermore, the objective function is quadratic, so that the optimization problem can be
written as

. | -
min 3 TLw-{—C’Zfijk

3,7,k
s.t. V(i,j, k) € Pirain : ’u_}’T(ﬁzi’zk — &zi’zj) >1- fz’jk
&ijk >0
Wi >0 )

For the case of 4 = I, ||[AWAT||% = wT Lw with L = I. For the case of A = &, we
define L = (AT A) x (AT A) so that || AW AT||2. = w? Lw. Note that L is positive semi-
definite in both cases and that, therefore, the optimization problem is convex quadratic.

5 Experiments

In Figure 1, we display a graphical example of our method. Example 1 is an example of
a weighted Euclidean distance. The input data points are shown in 1a) and our training
constraints specify that the distance between two square points should be less than the dis-
tance to a circle. Similarly, circles should be closer to each other than to squares. Figure 1
(1b) shows the points after an MDS analysis with the learned distance metric as input. This
learned distance metric intuitively correponds to stretching the x-axis and shrinking the
y-axis in the original input space.

Example 2 in Figure 1 is an example where we have a similar goal of grouping the squares
together and separating them from the circles. In this example though, there is no way to
use a linear weighting measure to accomplish this task. We used an RBF kernel and learned
a distance metric to separate the clusters. The result is shown in 2b.

To validate the method using a real world example, we ran several experiments on the
WEBKB data set [5]. In order to illustrate the versatility of relative comparisons, we gen-
erated three different distance metrics from the same data set and ran three types of tests: an
accuracy test, a learning curve to show how the method generalizes from differing amounts
of training data, and an MDS test to graphically illustrate the new distance measures.

The experimental setup for each of the experiments was the same. We first split X, the set
of all 4,183 documents, into separate training and test sets, X ¢yqin and Xies:. 70% of the



all examples X added to Xy,..;,, and the remaining 30% are in X;.,;. We used a binary
feature vector without stemming or stop word removal (63,949 features) to represent each
document because it is the least biased distance metric to start out with. It also performed
best among several different variations of term weighting, stemming and stopword removal.

The relative comparison sets, Pjqin and Pi.s, Were generated as follows. We present
results for learning three different notions of distance.

e University Distance: This distance is small when the two examples, Z, 7/, are from
the same university and larger otherwise. For this data set we used webpages from
seven universities.

e Topic Distance: This distance metric is small when the two examples, #, i, are
from the same topic (e.g. both are student webpages) and larger when they are
each from a different topic. There are four topics: Student, Faculty, Course and
Project webpages.

e Topic+FacultySudent Distance: Again when two examples, Z, i, are from the
same topic then they have a small distance between them and a larger distance
when they come from different topics. However, we add the additional constraint
that the distance between a faculty and a student page is smaller than the distance
to pages from other topics.

To build the training constraints, Pj.q:, We first randomly selected three documents,
Zi, T, T, Trom Xy,.q40,. For the University Distance we added the triplet (¢, j, k) 10 Ptyrain
if z; and 2-; were from the same university and 5, was from a different university. In build-
ing Pyrqrn for the Topic Distance we added the (i, j, k) t0 Pypair if ; and z; were from
the same topic (e.g. “Student Webpages™) and x4, was from a different topic (e.g. “Project
Webpages”). For the Topic+FacultyStudent Distance, the training triple (i, j, k) was added
to P;yqin if either the topic rule occurred, when z; and z; were from the same topic and
xy, was from a different topic, or if 2; was a faculty webpage, =; was a student webpage
and x5, was either a project or course webpage. Thus the constraints would specify that
a student webpage is closer to a faculty webpage than a faculty webpage is to a course
webpage.

Learned d;(-,-) | Binary | TFIDF
University Distance 98.43% 67.88% | 80.72%
Topic Distance 75.40% 61.82% | 55.57%
Topic+FacultyStudent Distance 79.67% 63.08% | 55.06%

Table 1: Accuracy of different distance metrics on an unseen test set Py;.

The results of the learned distance measures on unseen test sets P;.; are reported in Table
1. In each experiment the regularization parameter C' was set to 1 and we used A = I.
We report the percentage of the relative comparisons in Py, that were satisfied for each of
the three experiments. As a baseline for comparison, we give the results for the static (not
learned) distance metric that performs best on the test set. The best performing metric for
all static Euclidean distances (Binary and TFIDF) used stemming and stopword removal,
which our learned distance did not use. The learned University Distance satisfied 98.43%
of the constraints. This verifies that the learning method can effectively find the relevant
features, since pages usually mentioned which university they were from. For the other
distances, both the Topic Distance and Topic+FacultyStudent Distance satisfied more than
13% more constraints in P4 than the best unweighted distance. Using a kernel instead of
A = I did not yield improved results.

For the second test, we illustrate on the Topic+FacultyStudent data set how the prediction
accuracy of the method scales with the number of training constraints. The learning curve
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Figure 2: Learning curves for the Topic+FacultyStudent dataset where the x axis is the size
of the training set P,..;,, plotted against the y axis which is the percent of constraints in
P, that were satisfied.

is shown in Figure 2 where we plot the training set size (in number of constraints) versus
the percentage of test constraints satisfied. The test set P,;.s; was held constant and sampled
in the same way as the training set (| Pr.s¢| = 85,907). As Figure 2 illustrates, after the data
set contained more than 150,000 constraints, the performance of the algorithm remained
relatively constant.

As a final test of our method, we graphically display our distance metrics in Table 7. We
plot three distance metrics: The standard binary distance (Figure a) for the Topic Dis-
tance, the learned metric for Topic Distance (Figure b) and, and the learned metric for the
Topic+FacultyStudent Distance (Figure ¢). To produce the plots in Table 7, all pairwise
distances between the points in X;.5; were computed and then projected into 2D using a
classical, metric MDS algorithm [1].

Figure a) in Table 7 is the result of using the pairwise distances resulting from the un-
weighted, binary L, norm in MDS. There is no clear distinction between any of the clusters
in 2 dimensions. In Figure b) we see the results of the learned Topic Distance measure. The
classes were reasonably separated from each other. Figure ¢) shows the result of using the
learned Topic+FacultyStudent Distance metric. When compared to Figure b), the Faculty
and Student webpages have now moved closer together as desired.

6 Reated Work

The most relevant related work is the work of Xing et al [11] which focused on the problem
of learning a distance metric to increase the accuracy of nearest neighbor algorithms. Their
work used absolute, qualitative feedback such as “A is similar to B” or “A is dissimilar to
B” which is different from the relative constraints considered here. Secondly, their method
does not use regularization.

Related are also techniques for semi-supervised clustering, as it is also considered in [11].
While [10] does not change the distance metric, [2] uses gradient descent to adapt a param-
eterized distance metric according to user feedback.

Other related work are dimension reduction techniques such as Multidimensional Scaling
(MDS) [4] and Latent Semantic Indexing [6]. Metric MDS techniques take as input a
matrix D of dissimilarities (or similarities) between all points in some collection and then
seeks to arrange the points in a d-dimensional space to minimize the stress. The stress of the



arrangement is roughly the difference between the distances in the d-dimensional space and
the distances input in matrix D. LSI uses an eigenvalue decomposition of the original input
space to find the first d principal eigenvectors to describe the data in d dimensions. Our
work differs because the input is a set of relative comparisons, not quantitative distances
and does not project the data into a lower dimensional space. Non-metric MDS is more
similar to our technique than metric MDS. Instead of preserving the exact distances input,
the non-metric MDS seeks to maintain the rank order of the distances. However, the goal
of our method is not a low dimensional projection, but a new distance metric in the original
space.

7 Conclusion and Future Work

In this paper we presented a method for learning a weighted Euclidean distance from rela-
tive constraints. This was accomplished by solving a convex optimization problem similar
to SVMs to find the maximum margin weight vector. One of the main benefits of the algo-
rithm is that the new type of the constraint enables its use in a wider range of applications
than conventional methods. We evaluated the method on a collection of high dimensional
text documents and showed that it can successfully learn different notions of distance.

Future work is needed both with respect to theory and application. In particular, we do
not yet know generalization error bounds for this problem. Furthermore, the power of the
method would be increased, if it was possible to learn more complex metrics that go beyond
feature weighting, for example by incorporating kernels in a more adaptive way.

This research was supported under NSF CAREER Award 0237381 and through the 1ISI.
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