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Abstract

In this paper we consider the stochastic
multi-armed bandit problem. However, un-
like in the conventional version of this prob-
lem, we do not assume that the algorithm
starts from scratch. Many applications of-
fer observations of (some of) the arms even
before the algorithm starts. We propose
three novel multi-armed bandit algorithms
that can exploit this data. An upper bound
on the regret is derived in each case. The
results show that a logarithmic amount of
historic data can reduce regret from loga-
rithmic to constant. The effectiveness of the
proposed algorithms are demonstrated on a
large-scale malicious URL detection problem.

1 Introduction

Many real-world problems, ranging from the optimiza-
tion of advertising revenue in search engines to the
scheduling of clinical trials, can be modeled as multi-
armed bandit problems. At each time step, the algo-
rithm chooses one of the possible arms (i.e. advertise-
ments, treatments) and observes its rewards. The goal
is to maximize the sum of rewards over all time steps,
typically expressed as regret compared to the best arm
in hindsight. In the conventional formulation of the
problem, the algorithm has no prior knowledge about
the arms. Many applications, however, provide some
data about the arms even before the algorithm starts.
For example:

• A search engine company has designedK retrieval
functions. Historic data is available from a beta-
test on a small sample of paid users, but now the
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functions should be fielded in the production sys-
tem as to maximize clickthrough.

• An online movie company has K different rec-
ommender functions to suggest movies to a user.
When a new user signs up, he is asked to rate a
few “pivotal” movies which provides historic data
for optimizing the choice of recommender function
in the long run.

• A clinical trial experiment was stopped due to a
legal hurdle. Now the courts went in favor of con-
tinuing the clinical trial but also warn that the
losses should be minimum from now on.

More generally, we define historic data as any obser-
vations of the arms that are collected before the start
of the online learning algorithm. The algorithm itself
has no control over the choice of arms in the historic
data, nor do all arms have to be sampled uniformly.

The availability of such historic data leads to the ques-
tion of how online learning algorithms can best use it
to reduce regret. This problem is meaningful only for
the case of stochastic arms [8, 5], since no amount of
historic data can help in the adversarial setting [4].

To our best knowledge, this problem has not been
studied in the literature. However, the work by [9] on
bandit problem with side information is related. Their
work assumes that historic data collected via some pol-
icy is available to evaluate a mapping from side infor-
mation to arms. In the absence of side-information,
their policy evaluation strategy reduces to choosing
the arm with the highest mean reward on the historic
data. Related is also the Sleeping Bandits Problem
[7], where only a subset of the arms is active at each
time step. While it can mimic historic data to some
extent (e.g. it allows the addition of a new arm at any
time), algorithms and bounds are weaker since they
cannot rely on a separation of historic data and online
learning.

This paper propose three new online learning algo-
rithms that are able to exploit historic data. We derive
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upper bounds on the regret for each of the three algo-
rithms, showing that a logarithmic amount of historic
data allows them to achieve constant regret. A de-
sirable property of any bandit algorithm with historic
obseravations is that the regret is zero with infinite
historic data. All the three algorithms that we pro-
pose satisfy this property. We also evaluate the algo-
rithms empirically on a malicious URL detection prob-
lem, finding that historic data can make a substantial
difference on practical problems.

2 Problem Definition and Notation

The stochastic K armed bandit problem considers
bounded random variables Xj,t ∈ [0, 1] for 1 ≤ j ≤ K
and time index t ≥ 1. Each Xj,t denotes the reward
that is incurred when the jth arm is pulled the tth time.
For arm j, the rewards Xj,t are independent and iden-
tically distributed with an unknown mean µj and an
unknown variance σ2

j . The arm with the largest mean
reward is denoted by j∗ i.e., µj∗ := max1≤i≤K µi. Fur-
ther, for any arm j, ∆j denotes µj∗ − µj . Often, we
replace j∗ with ∗ in any notation to denote a quantity
that corresponds to j∗.

Historic observations are denoted by Xh
j,t ∈ [0, 1] for

1 ≤ j ≤ K and 1 ≤ t ≤ Hj indexing the tth instance
of historic reward for arm j. Hj is the number of
historic instances available for arm j, and H is defined
as H :=

∑K
j=1 Hj . The historic rewards for each arm

are assumed to be drawn independently from the same
distributions as the non-historic rewards.

Tj(n) denotes the number of times the arm j is pulled
between times 1 and n (this excludes the pulls of
the arm in the historic data). The regret at time n

is defined as Rn := µj∗n − µj

∑K
j=1 E[Tj(n)], where

E[Tj(n)] is the expectation of Tj(n). The per-round
regret at time n is defined as Rn/n.

The mean reward from the historic data for arm j is

defined as X̄h
j :=

∑Hj

t=1
Xh

j,t

Hj
. Mean reward of arm j dur-

ing the execution of the algorithms until its nth pull

is defined as X̄j,n :=
∑

n
t=1

Xj,t

n . Analogously, the joint
mean reward of arm j incorporating both the historic

and the online data is X̄h
j,n :=

∑Hj
t=1

Xh
j,t+

∑n
t=1

Xj,t

Hj+n . Fi-

nally, V h
j,n denotes the sample variance of the rewards

for arm j until its nth pull including the historic data
and Vj,n denotes the sample variance without history.

3 A Naive Algorithm

We first consider the simplest algorithm that makes
use of the historic data: pick the arm with the maxi-

mum mean reward on the historic data and then to
simply play that arm in every iteration. Unfortu-
nately, this is not a very good strategy, since there is
a constant probability of suffering regret in each step.
By constructing an example, Theorem 1 shows that
this algorithm can have regret that grows polynomially
with time even if the arms have a logarithmic amount
of historic data.

Theorem 1 Consider a two armed bandit problem.

The first arm has a fixed reward 0.25+ ǫ, 0.5 > ǫ > 0,
the second arm has a Bernoulli reward with mean 0.25.
Suppose H2 =

(

3δ ln(n)/16ǫ2
)

then the naive strat-

egy has regret growing polynomially with n for any

n > exp(1/δ).

Proof We lower bound the probability that the ob-
served mean reward for the worse (second) arm is
higher than the mean reward for the better (first) arm:

P[X̄h
2 > X̄h

1 ] = P[B > H2(0.25 + ǫ)]

≥ P
[

Z > 4
√

H2ǫ/
√
3
]

. (1)

In (1) we applied Slud’s inequality [1] which states:

P[B > t] ≥ P
[

Z > (t− np) /
√

np(1− p)
]

,

for a binomial random variable B parametrized by n
and p such that p ≤ 1/2, np ≤ t ≤ n(1 − p), and
Z ∼ N (0, 1) (i.e. standard Gaussian random variable).

Further, for Z ∼ N (0, 1), we have from a result in [6]:

P [Z > θ] ≥ θ exp
(

−θ2 / 2
)

/ (
√
2π(1 + θ2)).

For θ > 1, it is easy to verify that θ/(1 + θ2) >
exp(−θ2/2). Thus, P [Z > θ] ≥ exp(−θ2) /

√
2π. Ap-

plying this to (1), we get,

P[X̄h
2 > X̄h

1 ] ≥ exp(−16H2ǫ
2/3) /

√
2π.

Substituting the value of H2 from the statement of the
theorem, we get,

P[X̄h
2 > X̄h

1 ] ≥ 1 / (
√
2πnδ).

Thus, the regret achieved by the Naive algorithm in
n steps is at least ǫn1−δ/

√
2π. From θ > 1, we get

n > exp(1/δ).

4 Algorithms and Analysis

In this section, we propose three new algorithms for
the stochastic multi-armed bandit problem with his-
toric data. For each algorithm, we prove a logarith-
mic regret bound. Interestingly, these bounds show
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Algorithm 1 – UCB1

At time t play the arm j that maximizes

X̄j,nj
+
√

2 ln(t)
nj

, where nj denotes Tj(t− 1).

Algorithm 2 – HUCB1

At time t play the arm j that maximizes

X̄h
j,nj

+
√

2 ln(Hj+t)
nj+Hj

, where nj denotes Tj(t− 1).

that a logarithmic amount of historic data is sufficient
to allow these algorithms to achieve constant regret.
Moreover, as the number of historic observations for
every arm tends to infintiy, the regret achieved is zero.
In particular, we derive bounds for the expected num-
ber of pulls for any suboptimal arm, i.e., E[Tj(n)].
From these, the regret bound can be computed as
∑

j:∆j>0 ∆jE[Tj(n)].

4.1 HUCB1: UCB1 with Historic Data

Our first algorithm is derived from the UCB1 algo-
rithm [5]. The original UCB1 algorithm is given in
Algorithm 1, while our extension of UCB1 for historic
data – called HUCB1 – is shown in Algorithm 2.

For a given amount Hj ≥ 0 of historical data for each
arm j, the following theorem provides an upper bound
for HUCB1 on the expected number of pulls for any
suboptimal arm.

Theorem 2 The expected number of pulls of any sub-

optimal arm j, for any time horizon n, satisfies,

E[Tj(n)] ≤ 1 + l+ +
π2(1+6Hj)
6(2Hj+1)2 + π2(1+6H∗)

6(2H∗+1)2 ., where,

l+ = max

(

0,
8 log(n+Hj)

∆2
j

−Hj

)

. (2)

Proof Define cit,s =
√

(2 ln(t+Hi))/(Hi + s), we
then have, for any integer l > 0,

Tj(n) =

n
∑

t=1

{It = j} ≤ l +

n
∑

t=1

{It = j, Tj(t− 1) ≥ l}

≤ l +

n
∑

t=1

{

X̄h
∗,T∗(t−1) + c∗t−1,T∗(t−1)

≤ X̄h
j,Tj(t−1) + cjt−1,Tj(t−1), Tj(t− 1) ≥ l

}

≤ l +
n
∑

t=1

{

min
0<s<t

X̄h
∗,s + c∗t−1,s ≤ max

l≤sj≤t
X̄h

j,sj + cjt−1,sj

}

≤ l +
∞
∑

t=1

t−1
∑

s=1

t−1
∑

sj=l

{

X̄h
∗,s + c∗t,s ≤ X̄h

j,sj + cjt,sj

}

.

The event
{

X̄h
∗,s + c∗t,s ≤ X̄h

j,sj
+ cjt,sj

}

implies at least

one of the following holds:1

X̄h
∗,s ≤ µ∗ − c∗t,s,

X̄h
j,sj

≥ µj + cjt,sj ,

µ∗ < µj + 2cjt,sj .











(3)

The derivation so-far is very similar to that in the orig-
inal UCB1 analysis. However, from this point, having
historic data starts to have a significant impact. The
probability that the first two inequalities in (3) hold
can be bound using Hoeffding’s inequality; inclusion
of historic data gives significantly tighter bounds:

P
[

X̄h
∗,s ≤ µ∗ − c∗t,s

]

≤ e−4 log(t+H∗) = (t+H∗)
−4,

P
[

X̄h
j,sj ≥ µj + cjt,sj

]

≤ e−4 log(t+Hj) = (t+Hj)
−4.

Further, for our choice of l = l+ given in (2), the third
inequality in (3) is false. We are now ready to bound
the expected number of pulls for arm j. We have,

E[Tj(n)] ≤ l+ +

∞
∑

t=1

t−1
∑

s=1

t−1
∑

sj=l+

P[X̄h
∗,s ≤ µ∗ − c∗t,s]

+

∞
∑

t=1

t−1
∑

s=1

t−1
∑

sj=l+

P[X̄h
j,sj ≥ µj + cjt,sj ]

≤ l+ +

∞
∑

t=1

t−1
∑

s=1

t−1
∑

sj=l+

(

(t+Hj)
−4 + (t+H∗)

−4
)

≤ 1 + l+ +
π2(1 + 6Hj)

6(2Hj + 1)2
+

π2(1 + 6H∗)

6(2H∗ + 1)2
.

In the above, we have used the fact that
m(2m−1)π2

3(2m+1)2 ≤ ∑m
t=1

1
t2 ≤ m(2m+2)π2

3(2m+1)2 , to derive

an upper bound for
∑∞

t=1(t+Hj)
−2.

First, note that the above bound reduces to the bound
for the UCB1 algorithm [5] when Hj = 0 for all
j. Next, to see how much impact historic data can

have on the regret, consider n = exp(
Hj∆

2
j

8 ) − Hj .

In this situation E[Tj(n)] ≤ π2(1+6Hj)
6(2Hj+1)2 + π2(1+6H∗)

6(2H∗+1)2

for HUCB1 which is inversely related to Hj . How-
ever, for UCB1, for the above choice of n, the up-
per bound on the E[Tj(n)] is upper bounded by

1+ 8
∆j

log
(

exp
(

Hj∆
2
j

8

)

−Hj

)

+ π2

3 , which is approx-

imately linear in Hj .

Rather than the confidence interval shown in Al-
gorithm 2, at first glance one might think that

1It is easy to check this by negating this claim.
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√

2 log(H+t)
(nj+Hj)

is the most natural choice to use for his-

toric data. It can be shown that this choice leads to
the following bound:

E[Tj(n)] ≤ max

(

0, 8
log(n+H)

∆2
j

−Hj

)

+
π2(1 + 6H)

3(2H + 1)2
.

It therefore has two disadvantages. First, it does not
take into account that there could be different numbers
of pulls for different arms in the historic data. Second,
whenHj is small but H is quite large, the above bound
can be worse than the one derived in Theorem 2.

4.2 HUCB3: An ǫ-Greedy Algorithm

Arguably the simplest bandit algorithm is UCB3 [5].
We now explore whether there is a similar algorithm
with historic data.

We first present a slightly modified version of UCB3
in Algorithm 3. Instead of having a single rate ǫ for
all arms, the following version has a different rate ǫj

for arm j. Despite this change, the analysis of this
algorithm is analogous to that of the original UCB3
algorithm. UCB3 has two parameters, d which is a
lower bound on the smallest (non-zero) ∆j and another
parameter c > 0, but these two parameters always
appear together as c/d2.

Algorithm 3 – UCB3

Parameters c > 0 and 0 < d < minj 6=j∗ ∆j

Define a sequence for each arm: ǫjn := min
(

1
K , c

d2n

)

At iteration n, let in be the arm with the highest
average reward (with no historic data), play arm in
with probability (1 −∑K

j=1 ǫ
j
n). Play arm j with

probability ǫjn.

To derive an algorithm that can exploit historic data,
the key is to set the rates ǫj in a way that accounts
for historic data. It might seem, at first, that replacing
the rate c

d2n with c
d2(n+Hj)

would work. Unfortunately,

this approach does not lead to strong guarantees.

First, observe that in the case of UCB32, ǫj is 1/K
until n ≤ cK/d2. The amount of exploration done by
UCB3 between times t0 := cK/d2 + 1 to n is lower
bounded as follows:

n
∑

t=t0

P[It = j] =

n
∑

t=t0

c

d2n
≥ c

d2
log

(

nd2

cK

)

−O(1)

To derive an ǫ-greedy-like algorithm that can exploit
historic data, we first find n such that the expected
exploration exceeds Hj . This is done by setting Hj

2We ignore the floor on cK/d2 for brevity.

equal to the lower bound (we ignore the constant
additive term) in the above equation. This gives

n0 = cK
d2 exp(

Hjd
2

c ). The historic version of the ǫ-
greedy algorithm will have the same rates as UCB3
in the first cK/d2 steps. However, after that, the rate
used by the historic algorithm at time step t > cK/d2

will be that of UCB3 at step (n0 + t− cK/d2). Based
on these ideas, HUCB3 is presented in Algorithm 4.
Note that when Hj = 0, ǫjn for HUCB3 reduces to
c/d2n, which is exactly the same rate as in UCB3.

We now provide an upper bound on the instantaneous
regret of HUCB3 in Theorem 4. The proof of the fol-
lowing theorem is provided as as an appendix due to
space constraints. The overall idea of the proof is the
same as the corresponding proof for HUCB3. The two
differences in our proof are the availability of historic
data while applying concentration inequalities and the
alternate definition of ǫjn as proposed in Algorithm 4.

Algorithm 4 – HUCB3

Parameters c > 0 and 0 < d < 1
Define a sequence for each arm:

ǫjn := 1/K for n ≤ cK/d2 and

ǫjn :=

(

K(e
Hjd

2

c − 1) + d2n
c

)−1

for n > cK/d2.

At iteration n, let jn = argmaxj X̄
h
j,Tj(n−1).

Play arm jn with probability (1 −∑K
j=1 ǫ

j
n). Play

arm j with probability ǫjn.

Theorem 3 For any n ≥ cK/d2, where c ≥ 10,
HUCB3 satisfies,

P[In = j] ≤ c

d2
1

(

cK
d2 (exp(

Hjd2

c )− 1) + n
) + o

(

1

n

)

.

The following corollary gives an upper bound on the
expected number of pulls of any sub-optimal arm j. It
is obtained by summing the instantaneous regrets for
arm j given in Theorem 3.

Corollary 4 HUCB3 admits the following bound for

any sub-optimal arm j, for any n > cK/d2,

E[Tj(n)] ≤
c

d2
log

(

cK
d2 (exp(

Hjd
2

c )− 1) + n

cK
d2 exp(

Hjd2

c )

)

+O(1).

To see how the above bound changes with historic
data, suppose Hj = c

d2 log(nd
2/cK), then E[Tj(n)] =

O(1). This again shows that a logarithmic amount of
historic data suffices to achieve constant regret. It is
also easy to see from the proof of Theorem 3 that these
additive terms go to zero exponentially with Hj and
H∗ thus showing that the regret approaches zero as the
number of historic observations approaches infinity.
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4.3 HUCBV: Exploiting Sample Variance

Our final algorithm is based on a recent version of
the UCB algorithm which also incorporates the sam-
ple variance of the rewards [2, 3]. In its most basic
form, the UCBV algorithm is as shown in Algorithm
5. Audibert et al. [2] show that a value of θ = 1.2
is enough for logarithmic convergence. The expected
regret of the UCBV algorithm was shown to be up-
per bounded by 10

∑

j:µj<µ∗

(

σ2
j /∆j + 2

)

log(n). The
advantage of UCBV over algorithms that do not incor-
porate the sample variance is that the regret bound for
UCBV involves σ2

j /∆j instead of 1/∆j. The variance

σ2
j can be substantially smaller than 1.

Algorithm 5 – UCBV

At time t play the arm j that maximizes

X̄j,nj
+

√

2θVj,nj
log(t)

nj
+ 3θ log(t)

nj
.

The historic version of the UCBV algorithm is sum-
marized in Algorithm 6. We will now derive an upper
bound on its regret.

Algorithm 6 – HUCBV

At time t play the arm j that maximizes Bj,Tj(t−1),t

with Bj,s,t = X̄h
j,s +

√

2θV h
j,s log(t+Hj)

s+Hj
+

3θ log(t+Hj)
s+Hj

.

Theorem 5 For θ = 1.2, HUCBV satisfies,

E[Tj(n)] ≤ 1 + vj +O(1) where vj is defined as:

vj := max

{

8

(

σ2
j

∆2
j

+
2

∆j

)

En
j −Hj , 2

}

. (4)

En
j denotes θ log(n+Hj).

Proof We start with inequality (8) from [3] which
holds for any integer uj > 1:

E[Tj(n)] ≤ uj +

n
∑

t=uj+K−1

t−1
∑

s=uj

P[Bj,s,t > µ∗]

+

n
∑

t=uj+K−1

P[∃s : 1 ≤ s ≤ t− 1 s.t. B∗,s,t ≤ µ∗] (5)

Our choice of uj is the smallest integer greater than vj
defined in (4). Following [3], for uj ≤ s ≤ t and t ≥ 2,

our choice of uj ensures that,

√

2(σ2
j +∆j/2)Et

j

s+Hj
+

3Et
j

s+Hj

≤
√

2(σ2
j +∆j/2)En

j

uj +Hj
+

3En
j

uj +Hj

≤
√

(2σ2
j +∆j)∆2

j

8(σ2
j + 2∆j)

+
3∆2

j

8(σ2
j + 2∆j)

≤ ∆j

2
. (6)

Consider the probability in the first term in (5),

P[Bj,s,t > µ∗]

≤ P[X̄h
j,s +

√

2V h
j,sEt

j

s+Hj
+

3Et
j

s+Hj
> µj +∆j ]

≤ P[X̄h
j,s +

√

2(σ2
j +∆j/2)Et

j

s+Hj
+

3Et
j

s+Hj
> µj +∆j ]

+P[V h
j,s ≥ σ2

j +∆j/2] ≤ P[X̄h
j,s − µj > ∆j/2]

+P[V h
j,s ≥ σ2

j +∆j/2] ≤ 2e−(s+Hj)∆
2
j/(8σ

2
j+4∆j/3).

In the above, the second step follows from (6). In the
last step, Bernstein’s inequality has been used twice
and the extra term Hj in the exponent is a result of
having historic data for arm j. Summing the above
upper bounds from s = uj to t− 1 and using the fact
that 1− e−x ≥ 2x/3 for 0 ≤ x ≤ 3/4 gives,

t−1
∑

s=u

P[Bj,s,t > µ∗] ≤
(

24σ2
j

∆2
j

+
4

∆j

)

e−En
j

Now, consider the last term in (5), using Theorem
1 (empirical Bernstein bound) of [3], it can be up-
per bounded by, 3

∑n
t=u∗+1 β(E∗

t , t), where, β(x, t) :=

inf1<α≤3 min
(

t, log t
logα

)

e−x/α. Therefore, we can write

the upper bound on E[Tj(n)] as,

E[Tj(n)] ≤ 1 + max

{

8

(

σ2
j

∆2
j

+
2

∆j

)

En
j −Hj , 2

}

+

(

24σ2
j

∆2
j

+
4

∆j

)

ne−En
j +

n
∑

t=u∗+1

β(E∗
t , t)

For the choice, θ = 1.2, ne−En
j in the third term above
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becomes, n
(n+Hj)1.2

≤ 1. Now consider the last term:

n
∑

t=u∗+1

β(E∗
t , t) ≤

∞
∑

t=3

β(E∗
t , t)

≤
∞
∑

t=3

min

(

t,
log t

log 1.1

)

e−θ log(t+H∗)/1.1

≤ O(1) +

∞
∑

t=40

log t

log 1.1
e−1.2 log(t+H∗)/1.1

≤ O(1) +

∞
∑

t=40

log t/ log 1.1

(t+H∗)1.09
= O(1).

In the second step, we replaced infimum over a range
to a specific value in the range. In the third step,
we used the fact that log t/ logα < t for t ≥ 40 and
α = 1.1. In the last step, we used the fact that
∑∞

t=1
log(t)

(t+H∗)1.09
is a convergent series; it is easy to

verify this fact by the integral test.

In the case of HUCBV, E[Tj(n)] = O(1) when n =
exp

(

Hj/(9.6(σ
2
j /∆

2
j + 2/∆j))

)

−Hj . Thus, with log-
arithmic amount of historic data, the regret is constant
once again. It can again be seen from the proof that
the additive terms approach zero as Hj and H∗ ap-
proach infinity.

In practice, the performance of HUCBV is significantly
better compared to the other versions of the algorithms
that we have proposed. This will be a recurring theme
in our experiments.

5 Experiments

Experiments were conducted on a large-scale real-
world dataset [10] containing about 2.4 million in-
stances. Each instance corresponds to a URL and has
more than 3.2 million features associated with it. The
label of an instance indicates whether the URL is ma-
licious or not.

Five different SVM classifiers were trained using a sub-
set of twenty thousand examples. The different SVMs
corresponded to different C parameter values (which
trade-off between margin and slack variables in SVM).
Predictions were then obtained on all the remaining in-
stances for all the five classifiers. The instances used in
training were not used in the rest of the experiments.
The five classifiers were then used as the arms of a
multi-armed bandit problem. The reward was simply
one when the prediction of the classifier matched the
true URL reputation label and zero when it did not.
The best arm differed from the second best by about
0.0208. Whereas the best arm differed from the worst
by ∆ := 0.0255. We show per-round regret expressed

as a fraction of ∆ (i.e. Rn/n∆) in our results. Note
that these ∆ values were estimated from about 2.4 mil-
lion examples. All the experiments in this section were
performed by drawing random samples from this pop-
ulation. Hence the above ∆ values denote true values
for the underlying distribution from which examples
were drawn.

Baselines Obviously, the original UCB algorithms
and the NAIVE strategy (Section 3) are baselines in
our experiments. However, we also considered three
other stronger strategies (called BUCB1, BUCBV and
BUCB3). These stronger strategies (BUCB) can-
not be run with arbitrary historic data and were
included merely for a wider perspective. These strate-
gies were as follows. In any experiment, if there were
H historic examples (for all the arms together), the
corresponding UCB algorithms were run for extra H
rounds at the start but the regret accumulated in these
first H rounds was simply ignored. Note that the arms
pulled in the first H iterations of the BUCB strategies
are completely determined by the underlying UCB al-
gorithm. In contrast, our algorithms for historic data
can have arbitrary history for any subset of arms.

It is possible to argue that BUCB strategies have
higher regret compared to HUCB algorithms. Sup-
pose, UCB13 is run for n + H iterations, then the
number of pulls of the sub-optimal arm j is O(ln(n+
H)/∆2

j). The number of pulls in the first H steps

is O(ln(H)/∆2
j ). The worst possible scenario is when

Θ(ln(H)/∆2
j) pulls are made in the firstH steps. Thus

ignoring the pulls of arm j in the first H steps would
give O(ln(n+H)/∆2

j − ln(H)/∆2
j ) pulls. In contrast,

E[Tj(n)] for HUCB1 is of the order O(ln(n+Hj)/∆
2
j−

Hj). This shows that the upper bound for our al-
gorithms are much better even though these baseline
strategies are stronger than completely ignoring his-
tory. Our experiments confirm this finding.

While the regret bounds we proved for the three al-
gorithms prescribe what parameters to use, these pa-
rameter choices are often very conservative since the
bounds hold for any distribution. We therefore con-
sidered variants of the proposed algorithms where the
trade-off between exploration and exploitation is tuned
empirically. In the case of UCB1, HUCB1, UCBV and
HUCBV, we put a weight θ on the confidence inter-
val; in the case of UCB3 and HUCB3, the parameter
d was always set at 0.0208; however the parameter c
was tuned. To tune the values of these parameters,
UCB1, UCB3, and UCBV were run 20 times where
the rewards came from a random draw of 3 × 105 in-
stances each time. The parameters corresponding to
the smallest average regret from these runs were fixed

3We can show similar results for UCB3 and UCBV.
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Figure 1: Rn/n∆ vs iterations with 400 historical examples per-arm.

for the rest of the experiments. For UCB1, θ was deter-
mined to be 0.2. In the case of UCB3, the parameter
c was found to be 0.03. Finally, in the case of UCBV,
θ was equal to 0.04. For our proposed algorithms (e.g.
HUCB1) and for the baselines above (e.g. BUCB1),
we simply used the same value of parameters found for
the corresponding base algorithm (e.g. UCB1).

5.1 How does history affect the regret?

The aim of the first experiment was to study the be-
havior of regret in the presence of historic data. The
total amount of historic data was fixed at 2000, uni-
formly split into 400 per arm. The algorithms were
then run on 3 × 105 instances and the per-round re-
gret was noted after each iteration for each algorithm.
The experiments were repeated 200 times by randomly
selecting the instances. A different set of historic data
was selected for each run.

The results (Rn/n∆ and error bars) of this experiment
are shown in Figure 1. Examining the impact of histor-
ical data on the regret, we see that all algorithms that
exploit historic data indeed outperform their counter-
parts. This experiment shows how a comparably small
amount of historic data can help achieve a substantial
improvement in regret. As expected, the NAIVE algo-
rithm performs poorly whereas, HUCBV has the best
performance among all the algorithms. It can also be
seen that the HUCB algorithms perform slightly bet-
ter than the corresponding BUCB strategies (for large
n in the case of HUB3 and HUCBV).

5.2 How does regret change with the amount
of history?

In this experiment, the amount of historic data is var-
ied to study its effect on the regret. The setup is analo-
gous to the previous experiments and again the historic
data is split uniformly among the arms. Per-round re-
gret is measured after 5, 000 iterations.

The results of this experiment are shown in Figure 2.
The regret at 5, 000 iterations for UCB1, UCB3, and

UCBV is shown as a baseline. As the amount of his-
toric data increases, the regret decreases as expected.
Over most amounts of historic data, HUCB1, HUCB3,
and HUCBV outperform their conventional counter-
parts. We once again see a small improvement over
BUCB strategies as well. BUCB3 has slightly better
performance over HUCB3 with a large amount of his-
tory at 5,000 iterations. This is due to the fact that
UCB3 algorithms take a longer time to converge (a
fact that can be verified from Figure 1 as well) due to
constant rates in the beginning. For large amount of
historic data, the NAIVE algorithm can reliably pick
the best arm using only the historic data. However,
when the amount of history is small, the regret from
the naive strategy is significantly higher when com-
pared to our algorithms.

5.3 How does the distribution of historic
data affect regret?

The final experiment was designed to study the ef-
fect of unbalanced amounts of historic data per arm.
Since the bounds we derived in this paper showed that
the number of times an arm j is pulled depends on
H∗ and Hj , we fixed the number of instances at 400
for the four non-optimal arms ( i.e. Hj = 400 when
j 6= j∗). The number of instances for the optimal arm
(H∗) was then varied in steps. The BUCB baselines
have an advantage in this experiment since we cannot
enforce a distribution of historic data over the arms
in that case—the algorithms decide which rewards are
revealed to them.

The results of this experiment are shown in Figure 3.
We show the behavior of the algorithms at 5, 000 iter-
ations.4 When H∗ is large, the sub-optimal arms are
under sampled and they tend to be pulled more of-
ten in the beginning. This can be seen by almost flat
curves for HUCBV and HUCB3 and by an increase in
regret in the case of HUCB1 for larger H∗ values. Ob-
viously, the naive algorithm has the opposite behavior

4After a large number of rounds (e.g. 105) there was
hardly any difference in regret for different H∗ values.
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Figure 2: Rn/n∆ vs the amount of history at 5,000 iterations.
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Figure 3: Rn/n∆ vs the amount of H∗ at 5, 000 iterations.

compared to our algorithms since the higher H∗, the
more likely it is to choose the best arm. Among the
three algorithms, HUCB1 seems to be the most sensi-
tive with respect to unbalanced history.

6 Discussion

As we pointed out in Section 4.1, the naive way of
incorporating history is to have log(t+H) in the con-
fidence interval rather than our choice of log(t +Hj).
We also pointed out that the regret bounds can be
significantly better for our choice of confidence inter-
val compared to the naive choice. This leads to an
intriguing possibility for the multi-armed bandit prob-
lems with no historic data. If we closely examine UCB
algorithms (UCB1 for instance), the confidence inter-

val there is
√

2 log(t)
nj

. A natural question is whether it

is possible to replace t inside the logarithm such that
the per-arm history during a run of UCB1 is better
incorporated? An algorithm of this kind will better
exploit the per-arm history during a run. Proposing a
formal confidence interval and proving rigorous upper
bounds in this case seem like interesting directions of
research to pursue.

7 Conclusions

We proposed three novel algorithms to exploit historic
data in stochastic multi-armed bandit problems. The
algorithms themselves have no control over the historic
data nor do the arms have to be sampled uniformly.
Logarithmic finite-time regret bounds were derived for
each of the three proposed algorithms. The bounds
showed that already a logarithmic amount of historic
data can lead to constant regret with our algorithms.
Experiments were conducted on a large-scale dataset.
The experiments validated our theory and showed that
even a little historic data can make a significant differ-
ence in terms of regret. Overall, HUCBV has the best
performance among all the algorithms. A properly
tuned HUCB3 often performs better than HUCB1.

A future direction in this line of research is to derive
algorithms that can exploit historic data also for other
stochastic bandit settings, such as bandits with a con-
tinuum of arms, dueling bandits, etc. While we only
showed upper bounds on the performance of the pro-
posed algorithms in this paper, a natural next step is
to also prove lower bounds for bandit problems with
historic data.
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A Appendix: Proof of Theorem 3

Proof Only a sketch of this proof showing the differences with the correspond-
ing steps in a similar derivation for UCB3 are given. The probability that the
arm j is chosen at time t is given by:

P[In = j] = ǫjn + (1 −
K
∑

j=1

ǫjn)P[X̄h
j,Tj(n−1) ≥ X̄h

∗,T∗(n−1)]

Moreover,

P[X̄j,Tj(n) ≥ X̄∗
T∗(n)] ≤ P[X̄h

j,Tj(n)
≥ µj +

∆j

2
] +P[X̄h

∗,T∗(n)
≤ µ∗ −

∆j

2
]. (1)

Denoting 1
2

∑n
t=1 ǫ

j
t by xj

0, it can be shown that the first term above is upper
bounded by,

P[X̄h
j,Tj(n)

≥ µj +
∆j

2
] ≤

(

x0P[TR
j (n) ≤ x0] +

2

∆2
j

e−∆2
j⌊x0⌋/2

)

e−Hj∆
2
j/2,

(2)

where, we get the extra factor exp(−Hj∆
2
j/2) from an application of Hoeffding’s

inequality incorporating the historic data and TR
j (n) is the number of times arm

j is selected at random in the first n draws. Since d ≤ ∆j for all j we can replace
exp(−Hj∆

2
j/2) with exp(−Hjd

2/2).
It can further be shown that:

P[TR
j (n) ≤ xj

0] ≤ e−xj
0
/5, (3)

using Bernstein’s inequality.
Finally, we can lower bound, xj

0 as follows:

xj
0 =

1

2

n
∑

t=1

ǫjt

=
1

2

cK

d2
∑

t=1

1

K
+

1

2

n
∑

t= cK

d2
+1

c

d2( cKd2 (eHjd2/c − 1) + t)

≥ c

2d2
log

(

ceK
d2 (eHjd

2/c − 1) + ne
cK
d2 eHjd2/c

)

. (4)

Using (1), (2), (3) and (4), it can be shown that:

P[In = j] ≤ c

d2( cKd2 (eHjd2/c − 1)) + n)

+

(

c

2d2
P

c

10d2

j log

(

1

Pj

)

+
2

d2
P

c
4

j

)

e−Hjd
2/2

+

(

c

2d2
P

c

10d2

∗ log

(

1

P∗

)

+
2

d2
P

c
4
∗

)

e−H∗d
2/2 (5)

1



where

Pj :=
cK
d2 e

Hjd
2/c

cK
d2 (eHjd2/c − 1) + n− 1

.

Thus, for c ≥ 10, the last four terms in (5) are o( 1n ) since d < 1.
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