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ABSTRACT
In many areas of life, we now have almost complete electronic
archives reaching back for well over two decades. This includes,
for example, the body of research papers in computer science, all
news articles written in the US, and most people’s personal email.
However, we have only rather limited methods for analyzing and
understanding these collections. While keyword-based retrieval
systems allow efficient access to individual documents in archives,
we still lack methods for understanding a corpus as a whole. In this
paper, we explore methods that provide a temporal summary of
such corpora in terms of landmark documents, authors, and topics.
In particular, we explicitly model the temporal nature of influence
between documents and re-interpret summarization as a coverage
problem over words anchored in time. The resulting models pro-
vide monotone sub-modular objectives for computing informative
and non-redundant summaries over time, which can be efficiently
optimized with greedy algorithms. Our empirical study shows the
effectiveness of our approach over several baselines.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Retrieval models

General Terms
Design, Theory
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1. INTRODUCTION
From news and blogs to twitter feeds, and from research papers

to patents, we are accumulating unprecedented amounts of text in
digital form. Advances in storage technology have allowed us to
maintain complete records of these text streams, and information
retrieval research has developed excellent tools for accessing indi-
vidual documents in the resulting collections. However, our ability
to analyze and interpret archives on a macroscopic level is still lim-
ited. Macroscopic questions one may ask about a collection range
from the creation of a timeline of influential documents or authors,
to the automatic summarization of the main chains of discussion.

To answer such macroscopic questions about a corpus of text
documents, we draw upon methods from document summariza-
tion (see [14]). Instead of summarizing a single (or small num-
ber of) individual documents using extracted sentences, we aim to
summarize a collection using extracted documents, authors, or key-
words. This shift implies substantial differences in what constitutes
a meaningful summary. In particular, time is more important for
the creation of corpus summaries than it is for conventional sum-
maries, and we argue that corpus summaries should reflect the in-
fluence that a document or author had on the future development
of the collection. Therefore, our summaries take the form of time-
lines, where components of a summary are defined with respect to
intervals or points of time.

More specifically, we formulate several variants of the corpus
summarization problem. First, we seek to identify k documents
that had the largest influence on the content of the corpus. Second,
for each point in time, we seek to identify those documents that
were most influential for that time. Third, we similarly identify
the most influential authors for each time-point. And fourth, we
identify key phrases at each time-point that were influential and
represent a coherent segment of the corpus.

All four corpus-summarization problems will be formulated as
coverage problems, where we approximate coverage of abstract
concepts through coverage of words in time. For conventional sum-
marization and diversified retrieval, coverage approaches [21, 28,
16, 23, 19] and, more generally, submodular summarization meth-
ods [10] represent the state of the art. In particular, they provide an
elegant model of the relevance/redundancy trade-off inherent in all
summarization problems. The key technical challenge for the prob-
lem of corpus summarization is the ability to model time-points and
time-intervals effectively, without sacrificing the computational ap-
proximation guarantees that the greedy algorithm provides for sub-
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modular function maximization [13, 8]. Our approach models the
fact that different ideas have varied novelty, and that the influence
of an idea changes over time. An important feature of our approach
is that it does not rely on observed or inferred link structure between
documents, but requires only the time-stamped document text. This
makes our approach applicable to a wide range of corpora for which
citation information is not available or not reliable. Furthermore, it
allows us to use citation information as “ground truth” for quan-
titative evaluation. On three scientific corpora, we perform such
evaluations, compare to several baselines and find that our methods
provide qualitatively interesting results.

2. RELATED WORK
Our approach in this paper is based on the idea of extractive sum-

marization; in this approach, a summary is created by selecting
smaller units (i.e. sentences) [3, 23, 10]. Corpus summarization
has similarities to extractive document summarization: instead of a
document to summarize, we have a corpus and instead of selecting
sentences, we select entire documents. Extractive summaries can
be obtained by maximizing the coverage of words over the corpus.
This idea has been used both in document summarization [23] and
information retrieval [28]. While existing approaches focused on
covering words as a proxy for concepts, we extend the notion to
identify documents from a corpus that had substantial influence on
the future development of the corpus. This gives us a more versatile
framework than, say, selecting sentences based on time-dependent
event weights [25].

There are several approaches that deal with the corpus as a whole
in an attempt to improve its accessibility. Recommender systems
strive to suggest what to read next based on past behavior and per-
sonal preferences [7] or on a query set consisting of example papers
[6]. A related approach uses collaborative filtering and/or content
filtering [24]. The goal of recommender systems, broadly, is to
suggest documents based on a query; the goal of our work is to un-
derstand how a corpus evolved over time and which authors, papers
and key-words demonstrated their influence during the evolution.

There has been previous work on modelling and visualizing text
corpora. On the macro level, we can describe a corpus in terms
of topics [2]. There has also been work [4] which show trends in
topics, indicating the main turning points. A different approach
considers intra-corpus relations and describes influence between
documents [18]. The disadvantage of these approaches is that the
units being summarized (e.g. documents) and being visualized (e.g.
turning points) are distinct objects. Bridging this disconnect is an
important aim for summarization systems since providing an ex-
plicit guide in the visualization (e.g. by providing the influential
documents in the corpus) helps a user become familiar with the
novel content in a corpus.

Temporal text mining [20] is another popular area of research.
There has been work [1] which views a news topic as a sequence of
events and selects those events that are relevant and novel to form
the summary. Further, timelines of events can be created [27, 22]
which show the major developments in a news topic. There is also
work on event threading [12] where events are not viewed as a flat
hierarchy of topics; these approaches model the dependencies be-
tween events. In addition, temporal features can also be used when
doing document summarization [9] to improve the performance.
Our work implicitly models sequences of events over time, but al-
ways presents explicit examples that highlight influential contribu-
tions. The main insight of this work is that explicitly modelling the
temporal context in which words appear in documents provides a
simple and very effective approximation to the flow of ideas in a
corpus.

Figure 1: Illustration of word-coverage objective.

3. SUMMARIZATION AS COVERAGE
In this paper, we explore several variants of the corpus summa-

rization problem, providing a temporal summary of the corpus in
terms of landmark papers, authors and key-phrases. All approaches
are formulated as maximum coverage problems, which have been
found to provide elegant and effective methods for conventional
summarization and diversified retrieval problems [10, 28, 21]. We
start by reviewing the coverage-based summarization idea in the re-
mainder of this section, and then extend it to corpus summarization
in Section 4.

3.1 Information Coverage as Word Coverage
Coverage-based summarization methods make a direct analogy

between a summary covering the information content in the ob-
ject to be summarized, and maximum coverage problems as de-
fined in theoretical computer science [8]. The key assumption of
coverage-based summarization methods is that coverage of words
can be used as a proxy for the coverage of information content.
By achieving a good coverage over words, the word coverage ap-
proach aims to select a summary which covers different topics. In
this way, coverage-based summarization methods elegantly avoid
redundancy and promote diversity.

While document summarization involves selecting a diverse set
of sentences from it, the idea can be naturally extended to corpus
summarization by selecting a diverse set of documents that maxi-
mizes coverage. In this approach, every word in a document has
a weight associated with it, indicating how important it is to cover
this word in the summary. These document weights are either de-
termined through a heuristic [10] or learned [19]. Documents are
selected so that the total weight of the covered words is maximized;
this is illustrated in Figure 1. In this example we want to select at
most two documents out of three and each covered word has unit
weight. We see that by selecting d1 and d2 we achieve the best
score of the summary, since we cover the maximum number of
words.

Formally, let U = {d1, d2, . . .} be the set of all documents in
the corpus, where each document is represented as a bag of words.
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Algorithm 1 for greedy submodular function maximization.
S∗ ← ∅
A← U = {d1, ...}
while A 6= ∅ and |S∗| < k do
z ← arg max

d∈A
F (S∗ ∪ {d})− F (S∗)

S∗ ← S∗ ∪ {z}
A← A\{z}

end while

The word coverage objective function, for any S ⊆ U , is defined
as follows:

F (S) =
X
w

θ(w)max
d∈S

φ(d,w), (1)

where, φ(d,w) represents the weight of a word w in the document
d. One common choice of φ is the TFIDF score [17]. Moreover
θ(w) is the weight for the word w depending on our belief of the
word’s importance.

3.2 Optimization via Greedy Algorithm
With the objective function defining the score of a summariza-

tion S, corpus summaries are constructed by finding the set S with
the highest score F (S). To obtain a summary we have to solve the
following optimization problem:

S∗ = arg max
S⊆U

F (S). (2)

An important property that enables the fast and accurate solution of
this optimization problem lies in the structure of F (S). It is well
known that the coverage objective F (S) is monotone (i.e. |S′| ≥
|S| =⇒ F (S′) ≥ F (S)) and submodular [8].

DEFINITION 1. Given a set U , a function f : 2U → R is
submodular iff for all u ∈ U and all sets S and T such that
S ⊆ T ⊆ U ,we have,

f(S ∪ {u})− f(S) ≥ f(T ∪ {u})− f(T ).

Submodular functions have a property that says that adding u to a
subset s of t increases f at least as much as adding it to t. While
maximizing monotone sub-modular functions is NP-hard [11], it is
known that the greedy Algorithm 1 achieves a 1− 1/e approxima-
tion to the optimum solution for any linear budget constraint [10,
8]. Further, this algorithm provides a 1−1/e approximation for any
monotone submodular scoring function. The algorithm starts with
an empty summary. In each step, a document is added to the sum-
mary that results in the maximum relative increase of the objective.
The algorithm terminates when the budget k is reached.

4. CORPUS SUMMARIZATION
While submodular summarization approaches have been very

successful for conventional summarization problems, we argue that
corpus summarization should not only optimize coverage of infor-
mation content, but also reflect which documents and authors were
important in the development of the corpus. In particular, we aim
to include influence between documents into the summarization ob-
jective.

To illustrate the difference between a conventional summariza-
tion problem and the type of corpus summarization we envision,
consider a corpus consisting of research papers covering two decades
of a particular field. In such a scenario, conventional word-based
coverage approaches would pick several (non-redundant) survey
papers, or papers that otherwise touch on a lot of different areas,

since their union will tend to cover the largest subset of words
in the corpus. However, while these survey papers are indeed a
good summary of the content, this selection will not provide any
information about how the corpus developed over time, what pa-
pers opened new areas of activity, and which authors influenced
the direction of the field. In the subsequent sub-sections, we show
how the conventional coverage-based approach can be extended to
provide summaries that not only optimize information content, but
also reflect influence and importance of individual documents and
authors.

To achieve this goal, the remainder of this section shows how
to (a) incorporate time into the summarization problems, (b) for-
mulate the summarization objective in terms of influence, and (c)
show how corpora can be summarized not only through landmark
documents, but also through influential authors and key-phrases.

Figure 2: Illustrating the coverage function for revealing influ-
ential documents.

4.1 Summarization through Influential Docu-
ments

We now explore how the word-based coverage objective can be
extended to summarize a corpus through a non-redundant set of in-
fluential documents. A pictorial illustration is shown in Figure 2,
indicating how influential documents introduce ideas that increas-
ingly cover the content of documents observed in later years. To get
to an operational formalization of influence in the coverage model,
we start with the following properties:

Spread: An influential document contains ideas that spread to other
documents. The more an idea spreads, the greater is its influ-
ence. Note that this aspect of influence requires us to include
a notion of time into the coverage objective, since ideas can
only spread forward in time.

Novelty: A document should only be credited for generating in-
fluence with respect to some idea, if this idea was first pro-
posed in that document. If an earlier document already con-
tained that idea, influence should be credited to that earlier
document. Note that this can be quite different from citation-
based impact measures, which may credit influence to review
papers or other papers that popularize an existing idea.

To capture novelty in the word-based coverage approach, we rede-
fine φ(d,w) in the coverage objective (1). Intuitively, we do not
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want to give document d credit for an idea – as represented by
its word distribution – if there already exist older documents d′,
t(d′) < t(d) that already cover this idea. t(d) denotes the year of
publication of the document d. More formally, letN (d) denote the
k-nearest neighbors (for example, based on cosine similarity) of the
document d among all the documents published before it, then we
capture the novel contribution of a document as

ν(d,w) = max


0, min

d′∈N (d)

˘
φ(d,w)− φ(d′, w)

¯ff
. (3)

In order to capture spread in the coverage objective, we enlarge
the set of objects that need to be covered to word-time pairs wy

for all words w and years y. This allows the coverage objective
to make a distinction between covering the word w in a year y and
covering the same word in year y′. Formally, we generalize θ(w) in
(1) and make it dependent on time, where each θ(w, y) separately
defines how important word w is for the given time y. We say that
the importance of a word w in year y is determined by the sum of
the TFIDF scores of the documents in year y:

θ(w, y) =
X

d:t(d)=y

TFIDF (d,w). (4)

Other weighting schemes can work here too (e.g. per-year inverse
document frequencies) because our model is oblivious to the pre-
cise choice of θ (as long as it well represents the spread). Note that
this allows us to model that some documents cover a word in cer-
tain years, but not in others. In particular, we say that a document
d only covers a word in those years that are later than its publica-
tion date t(d). This allows us to formulate the objective for finding
influential papers as follows:

F (S) =
X
w

X
y

θ(w, y) max
d∈S,y>t(d)

ν(d,w). (5)

The above objective multiplies the novel aspect of a word in a pa-
per with how important a word is in the future years. Intuitively,
the score is large when the set of selected documents S contains
documents with high novelty scores as well as a high influence in
the future. We therefore maximize the above objective using the
greedy Algorithm 1.

Note that this approach will not tend to select survey papers un-
like the word coverage approach for two reasons. First (and most
importantly), a survey paper will have a low novelty score since it
is mostly based on previous work. Second, usually survey papers
are written after a field is well developed, hence it does not cover
all those documents that appeared before it in (5).

The key feature that differentiates our model from related coverage-
based approaches is the insight that modelling the temporal context
in which words appear (and not just the within-document context)
can provide a strong signal for summarization tasks. We achieve
this by not just using words as proxy for ideas in a coverage ob-
jective, but anchor words at specific time-points to gauge the influ-
ence. Additionally, modelling novelty helps us correctly attribute
impact and avoids the pitfalls of citation-based impact measures.

4.2 Timelines of Document Influence
The previous section showed how the coverage objective can be

extended to focus on influential papers, producing summaries that
are organized by the publication date of the influential documents.
However, dual to such summaries, we may also ask the following
question: for each year y, what are the documents that most influ-
enced the content of this year? This is illustrated in Figure 3.

In the following subsection, we formulate a coverage objective
that identifies the k documents that had the most influence in a year

Figure 3: Illustrating the influence of documents in a particular
year.

(for every year). Intuitively, a document d influences a year y, if
it was published before year y, i.e. t(d) < y, and the novel ideas
from d have substantial coverage in year y. Instead of selecting
documents independent of year as in the previous section, we now
allow our method to select an influential document to cover a partic-
ular year y. This means that our optimization problem now selects
from a universe of document-year pairs Uy = {(di, yi), ...}. Here
di is any document from the corpus, and yi is any year such that
yi > t(di). This leads to the following objective which we seek to
maximize.

F (S) =
X
w

X
y

θ(w, y) max
(d, yd) ∈ S

y = yd > t(d)

ν(d,w). (6)

Similar to (5), the above objective multiplies the novelty score of
word w in a document d with the importance of the word for a year
y. However, (6) allows picking a different set of documents for
each year yi.

It is easy to see that F (S) in (6) decomposes into a set of in-
dependent optimization problems – one for each year. We may
therefore solve the following subproblem separately for each year
and concatenate the solution for each year to obtain the solution of
the original problem. Formally,

Fy(Sy) =
X
w

θ(w, y) max
d∈Sy,y>t(d)

ν(d,w). (7)

Each of the above objectives is monotone submodular and can be
solved using the greedy Algorithm 1.

4.3 Timelines of Author Influence
Analogous to selecting documents that had a large influence on

a given year, we can also ask which authors were most influen-
tial. It is easy to extend the optimization problem from the previ-
ous section so that it selects influential authors. Denote with d(a)
the documents in the corpus that were authored by author a. The
universe of items to select from now consists of author-year pairs
Uy = {(ai, yi), ...}. Selecting an author ai for year yi implies that
all documents the author wrote before year yi get selected. This
leads to the following objective,

F (S) =
X
w

X
y

θ(w, y) max
(a, ya) ∈ S

d ∈ d(a)
y = ya > t(d)

ν(d,w). (8)
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Figure 4: Illustrating the difference in word distributions over
time between a bogus term and a genuine keyword.

which again can be broken into independent optimization problems
for each year.

4.4 Summarizing Timelines with Key-Phrases
Summaries in terms of documents and authors still require the

user to read through some documents from the collection. We now
explore whether timelines of influence can be summarized through
key-phrases. In particular, we aim to identify the points in time
when new and influential ideas – as represented by a key-phrase –
entered the collection.

While we already have operational definitions of novelty and in-
fluence, we still need to define what makes a key-phrase a good rep-
resentative of an idea. We conjecture that a key-phrase that repre-
sents an idea well will be accompanied by stable word distribution
over the years. For instance, documents that mention the phrase
“HITS algorithm” will probably also mention several words related
to that idea, whereas documents mentioning “Related work” need
not have such a coherent set of overlapping words. The keyphrase
T1 in Figure 4 is an example of a good key-phrase, since documents
that contain T1 also share many other words. On the other hand, a
key-phrase that is not a good representative of an idea may occur in
documents talking about a variety of different ideas. T2 in Figure 4
is an example of a bad key-phrase.

We formalize this definition of key-phrases as follows. Define
the universe of elements to choose from, U = {(p, y), . . . }, where
p is a candidate key-phrase and y denotes the year when the key-
phrase became influential. Let the subset of the corpus that men-
tions a candidate key-phrase p be Dp. Intuitively, we wish to as-
sociate with (p, y) a representative document d∗ ∈ Dp which was
published in year y and which was the most influential document
in the subsequent development of Dp. According to our conjec-
ture, for a bogus keyphrase, the associated d∗ will achieve very
poor coverage of the word content observed in documents of Dp

that were published after y, while influential keyphrases will have
a document that covers the associated stable word distribution very
well. Following (4), we model the importance of covering a word

Algorithm 2 for greedy submodular function maximization with
budget constraint.
S∗ ← ∅
A← U = {p1, ...}
z∗ ← arg max

p∈A|C(p)<k

F ({p})

while A 6= ∅ and C(S∗) < k do

z ← arg max
p∈A

F (S∗ ∪ {p})− F (S∗)

C(p)
S∗ ← S∗ ∪ {z}
A← A\{z}

end while
if F (S∗) < F (z∗) then

return z∗

else
return S∗

end if

in Dp as θ(w, y)p. More precisely,

θ(w, y)p =
X

d∈Dp:t(d)=y

TFIDF (d,w).

d∗(p, y) = arg max
d∈Dp:t(d)=y

X
w

X
y′>y

θ(w, y′)
p
ν(d,w).

With this d∗ for each element in U , we can formulate the objec-
tive

F (S) =
X
w

X
y

max
(pi, yi) ∈ S

y = yi

ν(d∗(pi, yi), w)θ(w, y)pi . (9)

Again, the objective decomposes into independent sub-problems
for each year, and we can rewrite it for each year y as,

Fy(S) =
X
w

max
(pi,yi)∈S,yi=y

ν(d∗(pi, yi), w)θ(w, y)pi . (10)

Unlike in the previous optimization problems, we now associate
a cost C(p, y) = |{d ∈ Dp : t(d) = y}| with each element of S.
This is done to encourage associating a key-phrase with the point in
time when it begins to gain popularity. The number of documents
published in a year mentioning a key-phrase is used as a proxy for
the maturity of an idea. The optimization problem is,

Sy
∗ = arg max

S⊂U
Fy(S)

subject to
X

(p,y)∈S

C(p, y) ≤ K.

This formulation is an instance of the budgeted coverage prob-
lem with a linear cost constraint, and the greedy Algorithm 2 is
(1− 1/

√
e) optimal [10, 8].

4.5 Alternate Formulation using Global Opti-
mization and Adaptive Budget

For simplicity, so far we have decomposed the timeline-generating
optimization problems into independent sub-problems, one for each
year. This was possible since we imposed a cardinality constraint
for each year. However, we can also define a global optimization
problem across all years that constrains the maximum amount of
content covered in each year. This results in a summary that will
choose more documents from years that actually contain more in-
teresting information. Formally, We change the global objective
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from (6) into

F (S) =
X
w

X
y

min{Fy(Sy), τFy(Uy)}, (11)

where the parameter τ determines how much relative word content
per year we want to cover, Fy(Sy) is as defined in (7) and Uy is the
whole universe for year y. This global F (S) is also monotone sub-
modular and can be solved using the greedy Algorithm 1. Whereas
earlier we had a cardinality constraint parameter k to set for each
year, we have to set one global parameter τ (setting it higher results
in more detailed summary) and one global k (higher values result
in longer summary) now.

5. EXPERIMENTS
In this section, we empirically evaluate our proposed models

on publicly available datasets. We first describe the datasets and
then present the results of our experiments along with evaluation
metrics. The experimental results show the advantage of our ap-
proaches compared to other baselines in addition to good qualita-
tive results.

5.1 Datasets
We used three corpora containing research publications for eval-

uating our proposed approaches. The Neural Information Process-
ing Systems (NIPS) corpus contains 1955 published papers over
a span of 14 years. Similarly, the Association for Computational
Linguistics (ACL) corpus [15] contains 18041 papers published in
a number of conferences over a span of 39 years. We also collected
the set of papers published in the proceedings of SIGIR and CIKM
conferences over the years available from CiteSeer. This corpus
contains 2097 papers published over a span of 18 years (the last
year being 2007). In all cases, we associate each document (paper)
with its publication year and limit ourselves to 12 consecutive years
ending at the year before last (the citation graph is also constrained
only to those years). Since we compute novelty of a document
based on the nearest neighbors from the past, we also used the year
immediately before our subset for this purpose in the subsequent
experiments. The last year is skipped because it does not have any
citations from the future. We did not use the early years in ACL and
SIGIR-CIKM corpus because they contain significantly less papers
and citations compared to other years.

All datasets include citation graphs which we use for evaluation
purposes, however our method does not require citation informa-
tion and could thus be easily applied to other document collections.
Note that the citation graphs are sparse as they do not include refer-
ences to and from the papers outside the corpus. The NIPS collec-
tion has 1512, the ACL collection has 82892 and the SIGIR-CIKM
collection has 1750 citations between papers inside the corpus. In
addition to regular research papers, NIPS corpus also contains meta
documents representing volume indices. We removed such docu-
ments manually since they are very easy to spot. We also pruned
the words and retained only those words which occurred at least
twice in a document and in at least three documents in the cor-
pus. This simple heuristic removed a lot of noise introduced by
the OCR system, and allowed us to meaningfully interpret influ-
ence. We represent every document by the TFIDF score (computed
on the whole corpus) of the words contained in it after pruning, and
normalize the resulting document vector to unit length. To compute
the nearest neighbor in the past (to determine novelty), we use the
cosine similarity between the document vectors. We do not require
the exact nearest neighbors, and in case of a very large corpus, ap-
proximate methods to find similar documents can be employed to
sidestep the quadratic time complexity of this step.

5.2 Influential Documents
The word coverage approach (from Section 3) obtains a sum-

mary by maximizing the word coverage. In Section 4.1 we argued
that influential documents have novel ideas which subsequently
spread through the corpus. In this experiment, we select the most
influential papers based on our objective (5) which captures nov-
elty of a document and its sphere of influence, and compare it with
those selected by the simple word coverage objective (1). Since
there is no standard way of measuring the influence of a paper, we
resort to the citation structure available in the corpora. To quantita-
tively evaluate whether the selected papers were indeed influential,
we compute the total citation count for the set of papers (i.e., the
number of times these papers were cited by documents in the cor-
pus) selected by any algorithm. There have been several criticisms
of citation-based impact measures and some effort [5, 26] addresses
them. However, for a comparative study, we believe citation counts
are the least biased choice in this setup.

To provide a point of comparison for the coverage based ap-
proaches, we considered several baselines. The simplest baseline
was to randomly select documents until the budget was reached
(random). Another baseline that we considered was to select the
most prolific authors in the conference (in terms of number of ac-
cepted papers) and then select the required number of papers from
the union of their papers (authors). More concretely, we first rank
the authors according to the number of papers in the collection they
authored. Next, we pick the 10 most prolific authors. Finally, we
sample uniformly at random with replacement from the set of au-
thored papers the same number of papers for each author. We also
computed the upper bound on the total citation count possible for
a selection by selecting papers with the highest observed citation
inlinks in the corpus (bound).

We selected 100 documents from the NIPS, SIGIR-CIKM and
ACL corpus that maximize the respective objective function. Our
experiments presented here are using unigrams as the elements in
the universe. However, our methods can use other types of ele-
ments (e.g. bigrams formed from consecutive words, for which we
observed a similar trend in the results). The results of this experi-
ments are provided in Table 1. We also provide standard error of
these results; they were estimated from the citation count on 10
re-runs of 70% subsampling of the corpus.

From the table, it is clear that our approach (infl. papers) gets
significantly higher citations compared to the word-coverage ap-
proach (word cover) in all corpora. Moreover, finding influential
papers is computationally cheap (with running time linear in the
size of the corpus multiplied by the number of selected papers if
we do not count the preprocessing step of computing nearest neigh-
bors for novelty score) and, for example, takes a few seconds for
the NIPS corpus on a standard desktop computer.

method NIPS ACL SIGIR-CIKM
Random 64 (4.6) 422 (41) 84 (7.9)
Authors 115 (4.0) 1097 (49) 86 (4.8)
Word Cover 92 (2.7) 799 (170) 96 (5.2)
Infl. Papers 196 (12.8) 1842 (111) 217 (14.5)
Bound 521 (11.0) 9787 (143) 815 (13.5)

Table 1: Total citations obtained by the papers selected for in-
fluential documents and baselines using unigrams. All results
use 1-NN for novelty score. The values in parentheses indicate
standard error.

759



Figure 5: Comparison of results of word coverage approach
when using different values of k (number of nearest neighbors
for computing novelty score) on NIPS and ACL corpus for un-
igrams and bigrams. The horizontal axis represents the value
of k and the vertical axis relative performance (number of cita-
tions) when compared to not using the novelty score (i.e. k = 0).

5.3 Impact of Using Novelty Score
Our approach uses the novelty score (introduced in Section 4.1,

Eq. (3)) to credit a document for an idea only if it was the first one
proposing it. Novelty is captured by considering k nearest neigh-
bors in the past and subtracting their word weights (clipping at 0 to
prevent negative values) from the current document. In this subsec-
tion we explore the impact of choosing different values of parame-
ter k.

Results for the word coverage approach on NIPS and ACL (as
examples of two slightly different behaviors) using unigrams or
bigrams as elements in the universe are presented in Figure 5 .
We would expect word coverage to improve when using novelty
scores because the coverage most likely does not choose the initial
(highly cited) paper but some later one with better coverage (e.g. a
derivative paper that also incorporates some other ideas). This intu-
ition is confirmed by our results showing that using more neighbors
improves the score as we incorporate more and more information
about novelty. After a point we can see that performance starts
dropping again because we are subtracting too much content.

Almost all coverage approaches benefit from using 1-NN, but
increasing k only improves performance for word coverage ap-
proach. We believe that using 1-NN helps because it mimics a
language background model and penalizes frequent non-content
words, while increasing k above that does not bring significant ben-
efits because we already model temporal behavior with the choice
of our model.

5.4 Timelines of Document Influence
In this sub-section, we evaluate our approach to create timelines

of document influence and compare it against several other base-
lines. For each NIPS, ACL and SIGIR-CIKM corpus, we select 10
documents per year.

Again, we considered the random baseline (random) and the 10
most prolific authors (authors). The authors baseline is constructed
as follows: first create a union of all papers by 10 authors with the
highest number of accepted papers, and for each year select 10 doc-
uments randomly from this union (with replacement) published on
or before this year. We computed the upper bound on the citations
(bound) by selecting papers with highest citation count in a given

year (i.e. we count only citations occurring in that particular year)
– we call this the current citations.

We evaluate the selections based on the citation network as be-
fore. In the previous section, our evaluation was based on the total
number of citations a paper obtained. However, in this section, it is
based on the current citations. To select a timeline of influential pa-
pers, we select papers that have maximum influence in a particular
year (for each year). So, to quantitatively evaluate the selections, if
a paper is selected as influential in the year y, we count the num-
ber of citations it gets in the year y (i.e. only citations from papers
citing it in this year count) and then sum them across all years.

Results for this experiment are summarized in Table 2. We can
see that random baseline and authors have inferior performance
compared to our approach (timeline). Note that the gap between
our approach (timeline) and the bound is larger than in the influen-
tial papers experiment. We believe this is due to timeline being an
inherently harder problem – not only do we have to find influential
papers but we also have to specify exactly when were they influ-
ential (as the evaluation metric counts only citations from papers
citing in that selected year). Our approach to constructing time-
lines is fast to compute (time complexity is linear in the number of
years, papers selected and corpus size) and, e.g., takes less than 3
seconds on the NIPS corpus on a standard desktop computer.

method NIPS ACL SIGIR-CIKM
Random 14 (1.4) 85 (11) 11 (1.2)
Authors 14 (1.2) 84 (14) 7 (1.0)
Timeline 60 (3.0) 190 (14) 30 (1.9)
Bound 269 (3.0) 3316 (11) 367 (4.1)

Table 2: Current citations (i.e. number of citations from papers
citing in that particular year) obtained by the papers selected
for timeline and baselines using unigrams as elements of the
universe. All results are for 10 re-runs of 70% subsampling
and using 1-NN for novelty score. The values in parentheses
indicate standard error.

5.5 Timelines of Author Influence
In this section, we conducted experiments based on the objective

proposed in Section 4.3 to select timelines of Author Influence. In-
stead of selecting papers we now consider meta-documents describ-
ing authors and construct a timeline showing which authors were
important and when. In addition to this, for each selected author
we constrain the corpus to that author’s papers and find the most
influential ones (including their timeframe of prominence).

We present a visualization of the results for NIPS corpus in Fig-
ure 6. By just looking at the plot it is easy to gain some insight into
the development and content of the corpus. Features such as some
authors having an influence throughout the whole corpus (e.g. Jor-
dan, Sejnowski) are easy to spot. We can also see that some authors
have had more influence only in specific timeframes (e.g. Hinton in
the early years and Smola in the later years). In addition, looking at
the selection of an author’s most influential papers gives us insight
into what topics they usually write about.

Although there are quantitative metrics which might be used to
judge the output of the system to pick influential authors (e.g. H-
index), note that we require these metrics to be computed for the
timeframe of the collection only. Given the very sparse citation
graph, using only observed intra-collection citations is expected to
be a noisy signal. Qualitative results clearly indicate good perfor-
mance of our approach and we feel that any simple adaptation of
existing measures would not give a significantly better insight.
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Figure 6: An example of applying our framework to select the most important authors and the most important papers for the given
authors using our framework. In each of 11 consecutive years of NIPS we selected three authors and then we selected that author’s
most influential paper in a particular year. The width of the author’s slice (relative marginal benefit) represents the importance
relative to other selected authors (which is computed as decrease in objective score if we remove that author from the collected set).

5.6 Key-phrase Extraction
With the formulation described in 4.4, we ran experiments to find

prominent key-phrases in each of the scientific corpora. For the
set of candidate key-phrases, we considered trigrams and bigrams
that occurred in at least 0.2% of the documents in the respective
corpus. Moreover, if a trigram is admitted to the set of candidate
key-phrases, the constituent bigrams are not considered as candi-
dates. This is a simple heuristic that recognizes that the lexical unit
for phrases is usually a trigram or bigram and greedily prefers tri-
grams. More sophisticated ways to determine the set of candidates
are possible, say independently running a Part-Of-Speech tagger
and considering only noun phrases. The number of candidate key-
phrases using this heuristic rule is 3035 for the NIPS corpus, 8139
for the SIGIR-CIKM corpus and 4687 for the ACL corpus. The
fewer number of candidates in the ACL corpus is explained by the
fact that requiring the document frequency of bigrams or trigrams
to be 0.2% of a much larger corpus is a more restrictive filter.

We lack ground truth key-phrases to evaluate the output of our
system; also, it is hard to quantitatively judge the quality of an in-
fluential key-phrase’s associated timestamp. We therefore estimate
the average citations in the collection of documents that mentions a
key-phrase as a measure of its quality. Concretely, for a key-phrase
p and the subset of the corpus Dp that mentions it,

Score(p) =
X

d∈Dp;d′∈Dp;d′ 6=d

Cite(d← d′)/ |Dp|

where Cite(d ← d′) indicates that document d is cited by d′. We
optimized the objective in Section 4.4 for each year with a bud-
get of 3, and collected the set of all unique key-phrases. The re-
ported scores for this approach (presented as TimeCov in Table 4)
are the sum of Score(p) for each unique collected key-phrase p.
As a point of comparison, we also report the number of unique
key-phrases collected as Count. A simple baseline for this experi-
ment would be to pick the most frequent key-phrases occurring in

the corpus in each year: this approach is hindered by the frequent
occurrence of redundant phrases. For instance, “neural network”
in the NIPS corpus,“natural language” in the ACL corpus and “in-
formation retrieval” in the SIGIR-CIKM corpus appear in such an
overwhelming majority of documents over all the years as to drown
out other informative candidates. This baseline is reported as Most-
Freq in our results. Another approach we compare with is to pick
candidates that optimize the Score directly in each year; this can
be interpreted as an upper bound for this evaluation metric. We
also provide the collected candidates from the coverage approach
and one that optimizes the Score(t) directly for the SIGIR-CIKM
corpus in Table 3. Several informative phrases that come from di-
verse areas of research covered in SIGIR and CIKM get selected
in the coverage approach. Furthermore, a visualization of the key-
phrases over years for the NIPS corpus is shown in Fig. 7. Area of
the shaded region corresponding to a term represents the fraction
of documents observed in the corpus in that year that mention that
particular term.

NIPS ACL SIGIR-CIKM
Method Count Score Count Score Count Score
MostFreq 13 2.13 20 34.33 20 7.41
TimeCov 17 4.68 77 116.92 29 12.28
Bound 13 6.09 96 124.10 29 18.82

Table 4: Quantitative results of keyphrase extraction.

6. CONCLUSIONS
This paper presented a submodular framework for temporal cor-

pus summarization. We extended the notion of word coverage and
asserted that summaries cover important concepts by covering as-
sociated words over a time interval. A timeline of influential doc-
uments, or authors, or coherent key phrases was constructed using
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Year Coverage CiteScore
Keyword Marginal Influence Keyword Marginal Influence

1995
relevant document 17.240 information retrieval 20.0
query expansion 5.464 singular value 5.0

training set 5.0

1996
search engine 8.228 speech recognition 3.5
semantic indexing lsi 6.034 block size 2.0
filtering system 2.818

1997
web search 11.853 retrieval system 5.0
training data 7.871 test collection 5.0
language model 6.760

1998
language model 5.411 summarization system 8.0
retrieval model 4.799 naive bayes 7.0
learning algorithm 4.024 unjudged document 6.0

1999
language model 12.358 general english 10.0

pearson correlation 5.0

2000
clustering result 4.354 cumulative gain 8.0
document model 3.130 expansion term 4.0
cori algorithm 2.645 event detection 4.0

2001
cross-language information 4.897 smoothing method 14.5
user information 3.450 topic distillation 7.0
hits algorithm 3.044

2002
training example 2.099 translation disambiguation 3.0
term dependency 1.868 hoc retrieval 3.0
input stream 1.698

2003
query language 2.509 image feature 5.0
feature selection 1.779 finding expert 5.0
document clustering 1.751 novelty detection 4.0

2004
training image 1.887 regularized logistic regression 3.0
inverted index 1.413 label information 3.0
element retrieval 1.100 web browser 3.0

2005
xml retrieval 3.926 existing retrieval function 3.0

new system 2.0
index construction 2.0

Table 3: The list of key-phrases for SIGIR-CIKM selected by the greedy algorithm solving the budgeted coverage problem with
budget of 3 and by optimizing the citation score.

our approach, providing concrete suggestions for further and more
detailed exploration of the corpus contents. Our approach lever-
aged both the novelty of a document as well as its influence in
the development of the corpus and relied only on word features;
in particular, it does not require a citation structure to infer in-
fluence across time. Therefore it is applicable to any textual col-
lection which provides timestamped documents. Our optimization
objectives used monotone submodular functions to trade-off rele-
vance and redundancy elegantly, and were solved using an efficient
greedy algorithm with a constant factor approximation guarantee.
We empirically demonstrated that our approach performs better
than several baselines using citation based performance measures
and provided qualitative timelines for a few scientific corpora.
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