Learning from User Interactions through Interventions

Josef Broder, Olivier Chapelle, Geri Gay, Arpita Ghosh, Laura Granka, <u>Thorsten Joachims</u>, Bobby Kleinberg, Madhu Kurup, Filip Radlinski, Karthik Raman, Tobias Schnabel, Pannaga Shivaswamy, Adith Swaminathan, Yisong Yue

> Department of Computer Science Department of Information Science Cornell University

Interactive Learning Systems

About 7.640.000 results (0.19 seconds

port vector machine - Wikipedia, the free encyclope port vector machines (SVMs) are a set of related supervised le

- Examples
 - Search engines
 - Entertainment media
 - E-co
 - Sma
- Learni
- Interventions

- News

Past 24 hours All results Related searc

Page previews

- Gathering and maintenance of knowledge
- Measure and optimize performance
- Personalization

and bloggers love on Et

GM Commercial Vehicles

Interactive Learning System

- Designing Information Elicitation Interventions
 - Online Learning with Interventions
 - Offline Learning with Logged Intervention Data

Measuring Utility

Name	Description	Aggre- gation	re- Hypothesized ion Change with Decreased Quality	
Abandonment Rate	% of queries with no click	N/A	Increase	
Reformulation Rate	% of queries that are followed by reformulation	N/A	Increase	
Queries per Session	Session = no interruption of more than 30 minutes	Mean	Increase	
Clicks per Query	Number of clicks	Mean	Decrease	
Click@1	% of queries with clicks at position 1	N/A	Decrease	
Max Reciprocal Rank*	1/rank for highest click	Mean	Decrease	
Mean Reciprocal Rank*	Mean of 1/rank for all clicks	Mean	Decrease	
Time to First Click*	Seconds before first click	Median	Increase	
Time to Last Click*	Seconds before final click	Median	Decrease	

*) only queries with at least one click count

ArXiv.org: User Study

User Study in ArXiv.org

- Natural user and query population
- User in natural context, not lab
- Live and operational search engine
- Ground truth by construction
 - $\mathsf{Orig} \succ \mathsf{Swap2} \succ \mathsf{Swap4}$
 - ORIG: Hand-tuned fielded
 - SWAP2: ORIG with 2 pairs swapped
 - SWAP4: ORIG with 4 pairs swapped
 - $\mathsf{Orig}\succ\mathsf{Flat}\succ\mathsf{Rand}$
 - ORIG: Hand-tuned fielded
 - FLAT: No field weights
 - RAND : Top 10 of FLAT shuffled

ArXiv.org: Experiment Setup

• Experiment Setup

- Phase I: 36 days
 - Users randomly receive ranking from Orig, Flat, Rand
- Phase II: 30 days
 - Users randomly receive ranking from Orig, Swap2, Swap4
- User are permanently assigned to one experimental condition based on IP address and browser.
- Basic Statistics
 - ~700 queries per day / ~300 distinct users per day
- Quality Control and Data Cleaning
 - Test run for 32 days
 - Heuristics to identify bots and spammers
 - All evaluation code was written twice and cross-validated

Arxiv.org: Results

Economic Models of Decision Making

- Rational Choice
 - Alternatives ${\cal Y}$
 - Utility function U(y)
 - Decision $y^* = \operatorname{argmax}_{y \in \mathcal{Y}} \{U(y)\}$
- Bounded Rationality
 - Time constraints
 - Computation constraints
 - Approximate U(y)
- Behavioral Economics
 - Framing
 - Fairness
 - Loss aversion
 - Handling uncertainty

A Model of how Users Click in Search

• Model of clicking:

- Users explore ranking to position k
- Users click on most
 relevant (looking) links
 in top k
- Users stop clicking when time budget up or other action more promising (e.g. reformulation)
- Empirically supported by [Granka et al., 2004]

Balanced Interleaving

x=(u=tj, q="svm")

$f_1(x) \rightarrow y_1 \leftarrow$		\rightarrow f ₂ (x) \rightarrow y ₂
 Kernel Machines http://svm.first.gmd.de/ Support Vector Machine http://jbolivar.freeservers.com/ An Introduction to Support Vector Machines http://www.support-vector.net/ Archives of SUPPORT-VECTOR-MACHINES http://www.jiscmail.ac.uk/lists/SUPPORT SVM-Light Support Vector Machine http://ais.gmd.de/~thorsten/svm light/ 	Interleaving(y ₁ ,y ₂)	 Kernel Machines http://svm.first.gmd.de/ SVM-Light Support Vector Machine http://ais.gmd.de/~thorsten/svm light/ Support Vector Machine and Kernel References http://svm.research.bell-labs.com/SVMrefs.html Lucent Technologies: SVM demo applet http://svm.research.bell-labs.com/SVT/SVMsvt.html Royal Holloway Support Vector Machine http://svm.dcs.rhbnc.ac.uk
Model of User: Better retrieval functions is more likely to get more clicks.	 Kernel Machines http://svm.first.gmd.de/ Support Vector Machine http://jbolivar.freeservers.com/ SVM-Light Support Vector Machine http://ais.gmd.de/~thorsten/svm light/ An Introduction to Support Vector Machines http://www.support-vector.net/ Support Vector Machine and Kernel References http://svm.research.bell-labs.com/SVMrefs.html Archives of SUPPORT-VECTOR-MACHINES http://www.jiscmail.ac.uk/lists/SUPPORT Lucent Technologies: SVM demo applet http://svm.research.bell-labs.com/SVT/SVMsvt.html 	Invariant: Invariant: For all k, top k of balanced interleaving i union of top k_1 of r_1 and top k_2 of r_2 with $k_1=k_2 \pm$

Interpretation: $(y_1 \succ y_2) \leftrightarrow \text{clicks}(\text{topk}(y_1)) > \text{clicks}(\text{topk}(y_2))$ \rightarrow see also [Radlinski, Craswell, 2012] [Hofmann, 2012]

Arxiv.org: Interleaving Experiment

- Experiment Setup
 - Phase I: 36 days
 - Balanced Interleaving of (Orig,Flat) (Flat,Rand) (Orig,Rand)
 - Phase II: 30 days
 - Balanced Interleaving of (Orig,Swap2) (Swap2,Swap4) (Orig,Swap4)
- Quality Control and Data Cleaning
 - Same as for absolute metrics

Arxiv.org: Interleaving Results

Interactive Learning System

- Designing Information Elicitation Interventions
 - Model user's decision process \rightarrow derive intervention design
- Online Learning with Interventions
 - Offline Learning with Logged Intervention Data

Coactive Exploration Example 1

Coactive Feedback Model

Intervention: prediction y and browsing network

Coactive Exploration Example 2

svm - Google Searc	h × 🕀
← → C fi ©) www.google.com/search?aq=f&gcx=c&sourceid=chrome&ie=UTI 😭 🧕 🔧
+You Web Images	Videos Maps News Shopping Gmail More - Sign in 🔅 🖆
Google	svm
Search	About 16,600,000 results (0.11 seconds)
Everything Images Maps Videos News Shopping More	Support vector machine - Wikipedia, the free encyclopedia en.wikipedia.org/wiki/Support_vector_machine A support vector machine (SVM) is a concept in statistics and computer science for a set of related supervised learning methods that analyze data and recognize Formal definition - History - Motivation - Linear SVM SVM: Summary for Silvercorp Metals Inc Ordinary - Yahoo! Finance finance.yahoo.com/q?s=SVM View the basic SVM stock chart on Yahoo! Finance. Change the date range, chart type and compare Silvercorp Metals Inc Ordinary against other companies.
Any time Past hour Past 24 hours Past 24 hours Past 2 days Hast week hast month hast year custom range All results Related searches More search tools	SVM.LP www.svmcards.net/ SVM. A leader in the gift card industry and devoted to helping your business reward, promote, entice and grow. Established in 1997, we handle the sales, SVM Asset Management - Home www.svmonline.co.uk/ Founded in 1990, SVM Asset Management is a privately-owned firm based in Edinburgh The three founding directors continue to own 100% of the equity, with LIBSVM A Library for Support Vector Machines www.csie.ntu.edu.tw//co.st S Nov 2011 - An integer, Click, use tool for support vector classification and regression.
•	

Coactive Exploration Example 3

svm - Google Searc		A TABLE AND A	
← → C ♠ ©	www.google.com/search?aq=f&gcx=c&sourceid=chrome&i		
+You Web Images	Videos Maps News Shopping Gmail More -	sv meppen - Goog	le Search × 🕀
		← → C fi 🤇) www.google.com/search?aq=f&gcx=c&sourceid=chrome&ie=UTI 😭 🔒 🔧
Google	svm	+You Web Images	: Videos Maps News Shopping Gmail More - Sign in 🗱 🖆
Search	About 16,600,000 results (0.11 seconds)	Google	sv meppen
Everything	Support vector machine - Wikipedia, the free encyclope	Search	About 939,000 results (0.09 seconds)
Images	A support vector machine (SVM) is a concept in statistics and con out of related supervised learning methods that analyze data and rear		
Maps	Formal definition - History - Motivation - Linear SVM	Everything	SV Meppen 1912 e.V. Offizielle Webseite-
Videos		Images	Die offizielle Homep
News	SVM: Summary for Silvercorp Metals Inc Ordinary - Yahoo finance.vahoo.com/g?s=SVM	Maps	und informiert über die Mannschaft.
Shopping	View the basic SVM stock chart on Yahoo! Finance. Change the date	Videos	Willkommen auf www.svmeppen.de - SV Meppen 1912 e.V
More	and compare Silvercorp metals inc ordinary against other companies	News	1912.svmeppen.de/ - Translate this page SV Mennen e V, 1912 -Offizielle Website, SV Mennen, mennen, emsland, oberliga
	<u>SVM, LP</u>	Shopping	oberliga nord, fussball, fußball, lingen, steve haensel, webcomtech.net,
Any time	SVM. A leader in the gift card industry and devoted to helping your bu	More	SV Meppen - Wikipedia the free encyclopedia
Past hour Past 24 hours	promote, entice and grow. Established in 1997, we handle the sales,		en.wikipedia.org/wiki/SV_Meppen
Past 2 days	SVM Asset Management - Home	Show search tools	SV Meppen is a German association football club playing in Meppen, Lower Saxony. The club was founded on 29 November 1912 as Amisia Meppen and
Past week Past month	www.svmonline.co.uk/ Founded in 1990. SVM Asset Management is a privately-owned firm.		History - Stadium - Records - Literature
Past year	The three founding directors continue to own 100% of the equity, with		SV Mennen Nachrichten Liveticker Bilder vom SV Mennen in der
Custom range	LIDCV/M A Librory for Common Ventor Machines		www.noz.de/sport/sv-meppen - Translate this page
All results	www.csie.ntu.edu.tw/~cjlin/libsvm/		Berichte, Liveticker, Bilder und Audios vom SV Meppen, mehr zur Mannschaft sowie Analysen der Gegner in der Fußball-Regionalliga
Related searches	5 Nov 2011 – An integrated and easy-to-use tool for support vector cla regression		, , , , , , , , , , , , , , , , , , ,
More search tools	regreesien.		SV Meppen - Fußballverein - transfermarkt.de
•	III		Mit dieser Nachricht hatte Stephen Famewo (Foto) nicht gerechnet. Als unumstrittener
			Stammenieler trug er dazu bei, dass der SV Mennen in die Regionalliga

Coactive Exploration Machine Translation

We propose Coactive Learning as a model of interaction between a learning system and a human user, where both have the common goal of providing results of maximum utility to the user.

Wir schlagen vor, koaktive Learning als ein Modell der Wechselwirkung zwischen einem Lernsystem und menschlichen Benutzer, wobei sowohl die gemeinsame Ziel, die Ergebnisse der maximalen Nutzen für den Benutzer.

Wir schlagen vor, koaktive Learning als ein Modell der Wechselwirkung des Dialogs zwischen einem Lernsystem und menschlichen Benutzer, wobei sowohl die beide das gemeinsame Ziel haben, die Ergebnisse der maximalen Nutzen für den Benutzer zu liefern.

Coactive Preference Perceptron

Model

- Linear model of user utility: $U(y|x) = w^T \phi(x,y)$

- Algorithm
 - FOR t = 1 TO T DO
 - Observe \mathbf{x}_{t}
 - Present $y_t = \operatorname{argmax}_y \{ w_t^T \phi(x_t, y) \}$
 - Obtain feedback \bar{y}_t from user
 - Update $w_{t+1} = w_t + \phi(x_t, \bar{y}_t) \phi(x_t, y_t)$
- This may look similar to a multi-class Perceptron, but
 - Feedback \bar{y}_t is different (not get the correct class label)
 - Regret is different (misclassifications vs. utility difference)

$$R(A) = \frac{1}{T} \sum_{t=1}^{T} [U(y_t^*|x) - U(y_t|x)]$$

cardinal feedback
optimal y^{*}

[Shivaswamy, Joachims, 2012]

Never revealed:

Coactive Perceptron: Regret Bound

Model

 $U(\mathbf{y} | \mathbf{x}) = \mathbf{w}^{T} \phi(\mathbf{x}, \mathbf{y})$, where w is unknown

• Feedback: ξ -Approximately α -Informative

 $E[U(x_t, \overline{y}_t)] \ge U(x_t, y_t) + \alpha \big(U(x_t, y_t^*) - U(x_t, y_t) \big) - \xi_t$

• Theorem $\underbrace{user}_{feedback}$ $\underbrace{system}_{prediction}$ $\underbrace{gap to}_{optimal}$ $\underbrace{model}_{error}$ For user feedback \overline{y} that is α -informative in expectation, the expected average regret of the Preference Perceptron is bounded by

$$E\left[\frac{1}{T}\sum_{t=1}^{T}U(y_t^*|x) - U(y_t|x)\right] \le \frac{1}{\alpha T}\sum_{t=1}^{T}\xi_t + \frac{2R||w||}{\alpha\sqrt{T}} \xrightarrow{} \text{zero}$$

Shivaswamy, Joachims, 2012

Preference Perceptron: Experiment

Experiment:

Automatically optimize Arxiv.org Fulltext Search

Analogous to DCG

- Model
 - Utility of ranking y for query x: $U_t(y|x) = \sum_i \gamma_i w_t^T \phi(x, y^{(i)})$ [~1000 features]

 \rightarrow Computing argmax ranking: sort by $w_t^T \phi(x, y^{(i)})$

Feedback

Construct y
_t from y_t by moving clicked links one position higher.

Baseline

• Handtuned w_{base} for $U_{base}(y|x)$

Evaluation

 Interleaving of ranking from U_t(y|x) and U_{base}(y|x)

[Raman et al., 2013]

Why did it fail?

Assume

 $U_t(y|x) = U(y|x)$

Prediction

 $y = y^* = \operatorname{argmax}_y U_t(y|x)$

Feedback quality

 $E[U(x,\overline{y})] \ge U(x,y) + \alpha (U(x,y^*) - U(x,y)) - \xi$ = $U(x,y^*) - \xi$

→ any presence of click noise implies $\xi > 0$ → biased gradient

Optimizing the User Feedback

• Assume

 $U_t(y|x) = U(y|x)$

Prediction

 $y = y^* = \operatorname{argmax}_y U_t(y|x)$

Intervention

Present $\tilde{y} = Perturb(y)$

• Feedback quality

 $E[U(x,\bar{y})] \ge U(x,\tilde{y}) + \alpha \big(U(x,y^*) - U(x,\tilde{y}) \big) - \xi$

 $\rightarrow \xi = 0$ (or small)

 \rightarrow unbiased gradient at cost $U(x, y^*) - U(x, \tilde{y})$

Context x

FairPair Perturbation

Idea

- Perturb by swapping adjacent pairs
- Generate preferences only within pair
- → Randomizes out bias from presentation and feedback generation

Preference Perceptron: Experiment

Experiment:

• Automatically optimize Arxiv.org Fulltext Search

Model

• Utility of ranking y for query x: $U_t(y|x) = \sum_i \gamma_i w_t^T \phi(x, y^{(i)})$ [~1000 features]

 \rightarrow Computing argmax ranking: sort by $w_t^T \phi(x, y^{(i)})$

Feedback

- FairPair Perturbation
- Construct y
 _t from y_t by moving clicked links one position higher.

Baseline

- Handtuned w_{base} for $U_{base}(y|x)$ Evaluation
 - Interleaving of ranking from U_t(y|x) and U_{base}(y|x)

Interactive Learning System

- Designing Information Elicitation Interventions

 Model user's decision process → derive intervention design
- Online Learning with Interventions
 - Design space: LearningSystem = { Algorithm } x { Interventions }
- Offline Learning with Logged Intervention Data

Information in Interaction Logs

- Partial Information (aka "Bandit") Feedback
 - Search engine f_0 interleaves ranking y for query x with baseline ranker and observes win/loss δ
 - News recommender f_0 presents set y of articles for user x and observes that user reads δ minutes
 - Ad system f_0 presents ad y to user x and observe click/no-click δ
 - MT system f_0 predicts translation y for x and receives rating δ

$$\rightarrow \text{ Data: } S = ((x_1, y_1, \delta_1), \dots, (x_n, y_n, \delta_n))$$

Changing History

• Expected Performance of Stochastic Policy f: P(y|x, f)

Partial Information Empirical Risk Minimization

Counterfactual Risk Minimization

- Theorem [Generalization Error Bound]
 - For any bounded capacity H, for all $f\in H$ with probability $1-\eta$

$$U(f) \ge \widehat{Mean} \left(\frac{P(y_i|x_i, f)}{p_i} \delta_i \right) - O\left(\sqrt{\widehat{Var} \left(\frac{P(y_i|x_i, f)}{p_i} \delta_i \right)} \right)$$
Unbiased
Estimator
Variance
Control

- Intuition
 - De-bias estimator through propensity weighting
 - Correct for differences in variance of estimator for $f \in \mathbf{H}$
- → Constructive principle for designing learning algorithms: Counterfactual Risk Minimization (CRM)

CoStA Learning Algorithm

- Counterfactual Stochastic Approximator (CoStA)
 - Hypothesis space

• $P(y|x,w) = \exp(w \cdot \phi(x,y))/Z(x)$

Training objective

• successive Taylor majorization \rightarrow stochastic gradient

CoStA Experiment

- Experiment Setup
 - x: Reuters RCV1 text document
 - y: label vector with 4 binary labels
 - δ : number of incorrect labels
 - H: Isomorphic to CRF with one weight vector per label
- Results
 - Use f₀ to collect logs and train CoStA

Learning from User Interactions Conclusions

Learning from Human Decisions

Software + Papers: <u>www.joachims.org</u>