
Support Vector Training of Protein Alignment
Models

Chun-Nam John Yu1, Thorsten Joachims1, Ron Elber1, and Jaroslaw Pillardy2

1 Dept. of Computer Science, Cornell University, Ithaca NY 14853, USA
{cnyu,tj,ron}@cs.cornell.edu

2 Cornell Theory Center, Cornell University, Ithaca NY 14853, USA
jarekp@tc.cornell.edu

Abstract. Sequence to structure alignment is an important step in ho-
mology modeling of protein structures. Incorporation of features like sec-
ondary structure, solvent accessibility, or evolutionary information im-
prove sequence to structure alignment accuracy, but conventional gener-
ative estimation techniques for alignment models impose independence
assumptions that make these features difficult to include in a principled
way. In this paper, we overcome this problem using a Support Vector
Machine (SVM) method that provides a well-founded way of estimating
complex alignment models with hundred-thousands of parameters. Fur-
thermore, we show that the method can be trained using a variety of loss
functions. In a rigorous empirical evaluation, the SVM algorithm outper-
forms the generative alignment method SSALN, a highly accurate gen-
erative alignment model that incorporates structural information. The
alignment model learned by the SVM aligns 47% of the residues correctly
and aligns over 70% of the residues within a shift of 4 positions.
Keywords: Machine learning, Pairwise sequence alignment, Protein
structure prediction

1 Introduction

Sequence to structure alignment is a crucial step in building accurate three-
dimensional protein models in homology modeling. Most alignment methods are
based on dynamic programming on a linear cost model. In the simplest cases,
such as alignment with the BLOSUM matrices, the linear model specifies costs
for substituting one amino acid with another and for inserting a gap. The choice
of these costs greatly determines the quality of alignments. While it is well under-
stood how to estimate the substitution costs for such simple models, sequence
to structure alignment requires more complex cost models to take advantage
of the structural information available. For these complex cost models, conven-
tional generative estimation techniques like Hidden Markov Models (HMM) are
difficult to use due to the independence assumptions they make, for example, in
assuming that the amino acid sequence and the secondary structure labels of a
protein are generated by independent processes.

This paper explores a Support Vector Machine (SVM) method for learning
an application specific cost model from training data for sequence to structure

alignment. The advantages of this SVM method over conventional generative
techniques are threefold. First, unlike conventional generative estimation tech-
niques, the SVM method does not require independence assumptions among
features and therefore provides a well-founded way to learn cost models where
each aligned position is described not only by its amino acid identity, but by
a potentially high-dimensional feature vector. This feature vector may describe
additional properties of the aligned position (e.g. predicted secondary structure)
as well as properties of surrounding aligned positions (e.g. the previous amino
acid is hydrophobic). This provides great flexibility in building expressive mod-
els. Second, the SVM method inherits the benefits of conventional classification
SVMs, in particular its robustness to overfitting for high-dimensional and sparse
data. Third, the SVM method allows optimizing for different loss functions. This
allows accounting for uncertainty in the training data, as well as specifying which
types of alignment errors are more costly than others.

The work reported in the following shows that the SVM algorithm can be
used to learn highly accurate alignment models for sequence to structure align-
ments. It also provides the first large-scale implementation and empirical val-
idation of this SVM alignment algorithm, extending the basic algorithm first
proposed in [1, 2] to include loss functions. We show that this SVM algorithm
can effectively learn alignment models with hundreds of thousands of features,
outperforming the accuracy of state-of-the-art generative estimation techniques
[3]. Finally, we show that loss functions can be incorporated into the SVM
training problem while maintaining polynomial runtime guarantees. We find
that the use of application-dependent loss functions during training, in par-
ticular by only counting alignment errors if the shift from the correct residue
is more than 4, is effective in modeling the uncertainty in the training data.
The training and alignment program of this work is available for download at
http://svmlight.joachims.org.

2 Related Work

Conventional estimation techniques for alignment models (see e.g. [4–8]) take
the view of a generative probabilistic model. A generative alignment model (e.g.
HMM) aims to model the process that generates the data as the joint probabil-
ity distribution P (S, T, Y), where s = (s1, ..., s|s|) and t = (t1, ..., t|t|) are two
sequences and y is the alignment. We denote the length of a sequence with |.|.
If P (S, T, Y) (or a good estimate thereof) is known,

argmaxy P (S = s, T = t, Y = y) (1)

predicts an alignment y from two sequences s and t. To make estimation of
P (S, T, Y) tractable, it is decomposed by making independence assumptions on
the process that generates s and t. While this leads to efficient and simple esti-
mation problems, the independence assumptions restrict the interactions within
the sequences s and t that we could model.

Machine learning research over the last decade has provided substantial evi-
dence that discriminative learning (e.g. SVMs, MaxEnt classifiers) typically pro-
duces more accurate rules than generative learning (e.g. näıve Bayes classifiers,
HMMs) (see e.g. [9–11]). This can be explained as follows. Since P (Y |S, T) is
already sufficient for making an optimal prediction

argmaxy P (Y = y|S = s, T = t) , (2)

modeling the joint distribution of the input sequences S and T is not necessary,
and generative methods might be wasting effort in trying to do so. Discriminative
learning applied to the alignment problem would directly estimate P (Y |S, T)
or a related discriminant function, thus focusing on the relevant part of the
estimation problem.

Only few approaches to discriminative training of alignment models exist to
date. While not motivated from this learning theoretical perspective, work on
inverse alignment is closely related, since our SVM method can be viewed as
solving an inverse alignment problem. Inverse alignment is the task of finding a
cost model under which a given alignment algorithm outputs a desired alignment
y for sequences s and t. This problem was first formulated in [12]. They discuss
inverse alignment in the context of parametric sequence alignment and identify
geometric properties of the space of cost model. In more detail, the work in [13]
analyzes the space of models and shows that some aspects of its complexity grow
only polynomially.

The first concrete algorithm for inverse sequence alignment was proposed
in [14]. While they prove that their algorithm finds a consistent cost model in
polynomial time, their algorithm is limited to particular cost models with at
most 3 parameters.

The work presented in this paper follows the Structural SVM algorithm first
proposed in [1, 2] for sequence alignment and later generalized to a wide class
of multivariate prediction problems [15, 10]. In this paper we present the first
large-scale empirical evaluation of this type of algorithm for alignment. We also
extend the algorithm to optimize particular loss functions, and show how the
resulting optimization problems can be solved in polynomial time.

Related to our SVM approach are Conditional Random Fields (CRFs), which
have recently been proposed for sequence alignment as well [16, 17]. While CRFs
share with SVMs the benefits of discriminative training, they do not allow the
use of application-dependent loss functions.

Independent of the work on Structural SVMs in the machine learning com-
munity, recently an algorithm for inverse alignment was proposed in [18]. Their
formulation of the problem is similar to a Structural SVM and the algorithm re-
sembles the cutting-plane method used for training Structural SVMs. However,
their approach is based on a linear programming formulation instead of the qua-
datric programming formulation used in SVMs. Furthermore, their approach to
handling infeasibilities in the resulting optimization problem is different and it is
unclear how it relates to an intuitively meaningful loss function. While they give
empirical results, they are on a scale of 10 training examples and 212 features.

In the following, we will explore models trained over thousands of examples and
hundred-thousands of features.

3 Sequence Alignment

We begin by introducing the class of alignment models considered in this paper.
Since we focus on the problem of sequence to structure alignment, we will de-
scribe the model in these terms. However, the methods can obviously be used for
other applications as well. Let (s, t) be a pair of target and template sequence
that we wish to align. For an alignment y of (s, t), we write y as a sequence of
alignment operations (y1, y2, ..., y|y|). Each yk is an alignment operation of the
form (i, j), where i, j are positions of characters in s and t respectively, or a
special gap symbol ‘−’.

We consider alignment algorithms (e.g. [19]) that optimize a linear scoring
function Dw(y, s, t) = w · Ψ(y, s, t), where Ψ is a function that maps an align-
ment y of s and t to a feature vector, and w is a given cost vector. Note that
w contains the parameters of the alignment model that we will learn. We re-
quire that Ψ(y, s, t) be linear in the individual alignment operations yk within
y, written in terms of equations,

Ψ(y, s, t) =
|y|∑

k=1

φ(yk, s, t) , (3)

where φ is a function that maps each individual alignment operation onto a
feature vector. Note that this feature vector can be any function that depends on
the operation yk and the full target and template sequences, not just the current
positions that are aligned by yk. In general, alignment algorithms compute

argmax
y∈Y

[w ·Ψ(y, s, t)] = argmax
y∈Y

 |y|∑
k=1

w · φ(yk, s, t)

 (4)

to determine the alignment, where Y is the set of all possible (local or global, as
desired) alignments between s and t. This is typically computed using dynamic
programming (e.g. [19]). Note that our setting includes the common scenarios
of alignment with substitution matrices such as BLOSUM as a special case,
where the function φ(yk, s, t) return a sparse vector with exactly one ‘1’ that
corresponds to the particular substitution or gap score in w. However, we will
consider richer feature mappings φ that go beyond amino-acid identity and that
include structural information of the template sequence.

4 Discriminative Training of Alignment Models

In the above section, the vector w parameterizes the scoring function D and has
crucial influence on the quality of alignments between s and t. In the following,

we aim to learn w from a set of training examples

S = ((s1, t1,y1), (s2, t2,y2), ..., (sn, tn,yn)) (5)

of sequence pairs (si, ti) for which the (approximately) correct alignment yi is
known. This training set is assumed to be generated independently and iden-
tically distributed (i.i.d.) according to some unknown distribution P (S, T, Y).
Thinking of a sequence alignment algorithm as a function,

hw(s, t) = argmaxy∈Y [w ·Ψ(y, s, t)] (6)

maps a given sequence pair (s, t) to an alignment y. Our goal is to find a pa-
rameter vector w so that the predicted alignment hw(s, t) matches the correct
alignment on new test data as well as possible. In particular, we want to find a
w that minimizes the expected loss (i.e. risk)

RP (hw) =
∫

∆(y, hw(s, t)) dP (S, T, Y) , (7)

where ∆(y,y′) is a user defined (non-negative) loss function that quantifies how
“bad” it is to predict y′ when y is the correct alignment. For example, one may
choose ∆(y,y′) to be 1 minus the Q-score (Q-score is the fraction of match
operations from y that are also contained in y′).

Following the principle of (Structural) Empirical Risk Minimization [20], find-
ing a w that predicts well on new data can be achieved by minimizing the empir-
ical loss (i.e. the training error) RS(hw) =

∑n
i=1 ∆(yi, hw(si, ti)) on the training

set S. This leads to the computational problem of finding the w which minimizes
RS(hw) as follows.

5 Structural SVMs for Sequence Alignment

In the framework of structural SVMs [10], we formulate the problem of finding
the parameters w that minimizes the empirical loss RS(hw) of the sequence
alignment algorithm as the following optimization problem:

min
w,ξ

1
2
‖w‖2 +

C

n

n∑
i=1

ξi (8)

s.t. ∀i ∈ {1, .., n} ∀ŷ ∈ Yi\{yi} : w · (Ψ(yi, si, ti)−Ψ(ŷ, si, ti)) ≥ ∆(yi, ŷ)− ξi

The objective is the conventional regularized risk used in SVMs. The constraints
state that the score w ·Ψ(yi, si, ti) of the correct alignment yi must be greater
than the score w·Ψ(ŷ, si, ti) of all alternative alignments ŷ. Note that Yi (i.e. the
set of all possible alignments for example i) depends on whether the alignment is
local or global. However, the optimization problem is well-formed in either case.

Unlike the formulation in [2], our new formulation includes a loss function
∆(yi, ŷ) that scales the desired difference in score. Intuitively, the larger the loss

of an incorrect alignment ŷ, the further should the score be away from that of the
correct alignment yi. This method for including a loss function is analogous to
proposals for other structured prediction problems [21, 10]. ξi is a slack variable
shared among constraints from the same example, since in general the constraint
system is not feasible. Following the proof in [10], it is easy to see that following
result holds.

Theorem 1. If (w∗, ξ∗) is the solution of the optimization problem in (8), the
sum of the slack variables ξ∗i is an upper bound on the training loss, RS(hw) ≤∑n

i=1 ξ∗i .

This shows that our formulation minimizes training loss, while the SVM-style
regularization with the norm of w in the objective provides protection against
overfitting for high-dimensional w. The parameter C allows the user to control
the trade-off between training error and regularization.

5.1 Efficient Training Algorithm

While it is easy to see that the optimization problem in (8) is convex, it unfor-
tunately has an exponential number of constraints. This results from the fact
that there are exponentially many “wrong” alignments Yi\{yi} for each given
pair of sequences (si, ti). Any attempt to solve this type of optimization problem
using standard methods that require enumerating all constraints is obviously not
tractable for sequences and training sets of interesting size.

Despite the exponential size, however, it has been shown that cutting-plane
algorithms can be used to efficiently approximate the optimal solution of this
type of optimization problem [10]. An adaptation of this algorithm to the prob-
lem of sequence alignment is given in Fig. 1. The algorithm iteratively constructs
a subset of all constraints from (8) until this subset constrains the feasible region
enough to ensure an ε-accurate solution. The desired precision ε is provided by
the user. In particular, the algorithm starts with an empty set K of constraints.
It then adds the most violated constraint among the exponentially many for
each example. If no constraint exists that is violated by more than ε, the algo-
rithm terminates. Otherwise, it solves the optimization problem over the current
set K and repeats. Adapting the result from [10], it can be proved that only a
polynomial number of constraints will be added before the algorithm converges.

Theorem 2. For any ε > 0, C > 0, and any training sample S = ((s1, t1,y1),
. . . , (sn, tn,yn)), the algorithm in Fig. 1 converges after adding at most
max

{
2n∆̄/ε, 8C∆̄R2/ε2

}
constraints to K, where R = maxi,y ||Ψ(y, si, ti)|| and

∆̄ is an upper bound on the loss function ∆(yi, ŷ).

One crucial aspect of the algorithm, however, is the use of an oracle (often
called a separation oracle in optimization theory) that can find the most violated
constraint among the exponentially many in polynomial time. This is equivalent
to the argmax problem in the algorithm. The following section shows that this
argmax can be computed efficiently for a large class of loss functions.

Input: sequence pairs (s1, t1), ..., (sn, tn), correct alignments y1, ...,yn, tolerated error
ε ≥ 0.

K = ∅, w = 0, ξ = 0
repeat

– Korg = K
– for i from 1 to n

• ŷ = argmaxŷ∈Yi\{yi} [∆(yi, ŷ) + w · (Ψ(ŷ, s, t) − Ψ(yi, si, ti))]
• if w · (Ψ(yi, si, ti) − Ψ(ŷ, s, t)) < ∆(yi, ŷ) − ξi − ε

∗ K = K ∪ {w · (Ψ(yi, si, ti) − Ψ(ŷ, s, t)) ≥ ∆(yi, ŷ) − ξi − ε}
∗ (w, ξ) = argminw,ξ

1
2
‖w‖2 + C

n

Pn
i=1 ξi subject to K.

until (K = Korg)
Output: w

Fig. 1. Cutting-plane algorithm for solving the SVM optimization problem.

5.2 Loss Functions

We first introduce the Q-loss function, which we denote as ∆Q(yi, ŷ) for the
loss between a correct alignment yi and a predicted alignment ŷ. The Q-loss
measures the proportion of incorrect matches in a predicted alignment, which
we want to minimize. Writing ŷ as a sequence of alignment operations ŷ =
(ŷ1, ŷ2, ..., ŷ|ŷ|), we can decompose the Q-loss ∆Q(yi, ŷ) into a sum of losses on
individual alignment operations ∆Q(yi, ŷ) = 1−

∑|ŷ|
k=1 δQ(yi, ŷ

k). The function
δQ(yi, ŷ

k) returns 1/M when ŷk is a match contained in the correct alignment
yi, and 0 otherwise. M is the number of matches in yi. With this decomposition,
we can rewrite the computation of the most violated constraint in the cutting
plane algorithm as:

argmax
ŷ∈Yi\{yi}

 |ŷ|∑
k=1

(w · φ(ŷk, si, ti))− δQ(yi, ŷ
k)

 + 1−w ·Ψ(yi, si, ti) . (9)

Since the non-constant term in the argmax decomposes into a sum over individ-
ual alignment operations ŷk, we can apply dynamic programming similar to (4)
with operation costs modified to w · φ(ŷk, si, ti) − δQ(yi, ŷ

k) for each ŷk. Note
that δQ can be computed efficiently using table lookup.

Another interesting loss function that we would like to consider is the Q4-
loss function, where we count a match as correct even if it is slightly shifted, in
particular, shifted by not more than 4 positions. Suppose we have an alignment
operation ŷk = (i, j) in ŷ. The shift of ŷk is less than 4 if there is some match op-
eration yl = (u, j) in y with |i−u| ≤ 4. Similar to the Q-loss, we can decompose
Q4 linearly in its alignment operations as ∆Q4(yi, ŷ) = 1 −

∑|ŷ|
k=1 δQ4(yi, ŷ

k),
where δQ4(yi, ŷ

k) is 1/M if ŷk is a match operation contained in y with a shift of
4 or less, and 0 otherwise. The same dynamic programming algorithm applies to
the computation of most violated constraint with Q4-loss, since Q4-loss decom-
poses in the same way as the Q-loss. Again, note that δQ4 can again be computed

efficiently by table lookup of matched characters in the range (i−4, j), ..., (i+4, j)
within the correct alignment.

6 Experiments

The following experiments evaluate the SVM alignment algorithm on a sequence
to structure alignment task. We evaluate whether the algorithm can effectively
and efficiently learn complex alignment models with hundred-thousands of fea-
tures, how optimizing to different loss functions might help, and how the algo-
rithm compares to conventional methods.

In all our experiments, we train the algorithm on a training set, select any
parameters and models based on a validation set, and then report performance
on an independent test set. Beyond the choice of model φ(yk, si, ti) and loss
function ∆(y,y′), our method has only a single parameter to tune, namely the
regularization parameter C. We train alignment models with C ranging from 1
to 215, in powers of 2, all to precision ε = 0.01. We then pick the best model
based on the performance on the validation set, and report its performance on
the test set.

The training and validation sets are the same as those used in [3]. The data
set contains 1379 target sequences, and each target sequence s has one or more
template structures t associated with it. Structural alignments between target
and template are generated using the CE program [22], and one example (s, t,y)
is generated whenever the structural alignment y between the structure of s and
t has a CE Z-score of at least 4.5. The data set is randomly split into two sets,
namely a training set with examples from 690 targets and a validation set with
examples from 689 targets. The resulting training set contains 5119 examples
(i.e. pairwise alignments) while the validation set contains 5169 examples.

The test set is based on a database of protein structures that is used by the
modeling program LOOPP (http://cbsuapps.tc.cornell.edu/loopp.aspx).
We select 4185 structures from the new PDB structures released between June
2005 and June 2006 via clustering. These structures serve as target sequences
in our test set and none of them appear in the training or validation sets since
they were developed earlier. Each of these 4185 structures is aligned against all
other structures using the structural alignment program TM-align [23]. Pairs
that score 0.5 or better are considered homologous and are added to the test set.
The selected pairs are then aligned by the structural alignment program CE.
Only alignments that have CE Z-score higher than 4.5 are included in the final
test case, providing a total of 29764 alignments to consider.

As described in the following, we use structural annotations as features in
our alignment models. The structural annotations of all the target sequences,
i.e., the secondary structure and the relative exposed surface area, are predicted
by the SABLE program [24]. There are 3 types of secondary structure predicted
and the relative exposed surface areas are binned into 4 types. The structural
annotations used in the template structures are computed by the program DSSP

[25]. The secondary structures are binned into 5 types while the exposed surface
areas are binned into 6 types.

6.1 Can the SVM algorithm learn complex models effectively?

In our first set of experiments we evaluate models φ(yk, s, t) of increasing com-
plexity and number of features. Our focus is on exploring how far we can push the
complexity of the model and still be able to train them efficiently and effectively.

We use Ri
s, S

i
s, A

i
s to denote the residue, predicted secondary structure, and

predicted exposed surface area at the ith position of the target sequence, and
Rj

t, S
j
t , A

j
t to deonte the residue, actual secondary structure, and actural exposed

surface area at the jth position of the template structure. We also use R,S,A
to denote the set of possible values for residue, secondary structure, and exposed
surface area.

Substitution Cost Models For the substitution costs, we consider the follow-
ing six models for φ(yk, s, t). Since the length of alignments of different examples
varies greatly, we normalize each φ by dividing with |s|+ |t|.

Simple: In this alignment model we only consider the subsitution cost of single
features. Let yk = (i, j) be a match operation. We define φ(yk, s, t) to be

φSimple(yk, s, t)

=
∑

r1,r2∈R

I[Ri
s =r1, R

j
t =r2] +

∑
r1∈R,s2∈S

I[Ri
s =r1, S

j
t =s2] +

∑
r1∈R,a2∈A

I[Ri
s =r1, A

j
t =a2]

+
∑

s1∈S,r2∈R

I[Si
s =s1, R

j
t =r2] +

∑
s1,s2∈S

I[Si
s =s1, S

j
t =s2] +

∑
s1∈S,a2∈A

I[Si
s =s1, A

j
t =a2]

+
∑

a1∈A,r2∈R

I[Ai
s =a1, R

j
t =r2] +

∑
a1∈A,s2∈S

I[Ai
s =a1, S

j
t =s2] +

∑
a1,a2∈A

I[Ai
s =a1, A

j
t =a2] ,

where I[ρ] is a function that returns a vector with ‘1’ in the position designated
to ρ if the boolean expression ρ is true, and returns ‘0’ otherwise and in all
other positions. For example, I[R3

s = ‘A’, S7
t = ‘α’] returns ‘1’ in the particular

dimension corresponding to I[Ri
s = ‘A’, Sj

t = ‘α’], if yk = (3, 7) aligns the residue
alanine ‘A’ in s with an alpha helix ‘α’ in t. Otherwise, it returns ‘0’ in this
dimension. For all other dimensions it always returns ‘0’. Note that each such
dimension corresponds to a particular position in cost vector w. Note also that
each feature vector φSimple(yk, s, t) has exactly 9 ‘1’s corresponding to the 9
terms in the sum, and is zero elsewhere.

Anova2: In this more complex feature vector we take the interactions between
pairs of structural annotations at the same position in the sequence into account.

We define φ(yk, s, t) to be

φAnova2(yk, s, t) =
∑

r1,r2∈R,s1,s2∈S

I[Ri
s =r1, S

i
s =s1, R

j
t =r2, S

j
t =s2]

+
∑

r1∈R,a2∈A,
s1,s2∈S

I[Ri
s =r1, S

i
s =s1, S

j
t =s2, A

j
t =a2] +

∑
r1,r2∈R,s1∈S,

a2∈A

I[Ri
s =r1, S

i
s =s1, A

j
t =a2, R

j
t =r2]

+
∑

r2∈R,a1∈A,
s1,s2∈S

I[Si
s =s1, A

i
s =a1, R

j
t =r2, S

j
t =s2] +

∑
s1,s2∈S,
a1,a2∈A

I[Si
s =s1, A

i
s =a1, S

j
t =s2, A

j
t =a2]

+
∑

r2∈R,s1∈S,
a1,a2∈A

I[Si
s =s1, A

i
s =a1, A

j
t =a2, R

j
t =r2] +

∑
r1,r2∈R,s2∈S,

a2∈A

I[Ai
s =a1, R

i
s =r1, R

j
t =r2, S

j
t =s2]

+
∑

r1∈R,s2∈S,
a1,a2∈A

I[Ai
s =a1, R

i
s =r1, S

j
t =s2, A

j
t =a2] +

∑
r1,r2∈R,
a1,a2∈A

I[Ai
s =a1, R

i
s =r1, A

j
t =a2, R

j
t =r2] .

For example, the term I[Ri
s = r1, S

i
s = s1, R

j
t = r2, S

j
t = s2] returns ‘1’ in the

appropriate position, if yk = (i, j) aligns residue of type r1 in secondary structure
s1 in the target with residue of type r2 in secondary structure s2 in the template.
These features capture pairwise interaction of structural annotations within the
same sequence.

Tensor: In this even more complex alignment model we consider the interaction
of all three structural annotations. Note that there is only one non-zero feature
in this feature vector.

φTensor(yk, s, t) =
∑

r1,r2∈R,s1,s2∈S,a1,a2∈A

I[Ri
s = r1, S

i
s = s1, A

i
s = a1, R

j
t = r2, S

j
t = s2, A

j
t = a2]

Simple+Anova2: This alignment model is the union of the features in the Simple
and the Anova2 alignment models, i.e. φSimple(yk, s, t) + φAnova2(yk, s, t).

Simple+Anova2+Tensor: This alignment model is the union of all features
in the first three alignment models, i.e. φSimple(yk, s, t) + φAnova2(yk, s, t) +
φTensor(yk, s, t).

Window: On top of the Simple+Anova2+Tensor feature vector, we add several
terms involving the substitution score of a sliding window of features centered
around positions i and j.

φWindow(yk, s, t) = φSimple(yk, s, t) + φAnova2(yk, s, t) + φTensor(yk, s, t)

+
∑

r1,r2,r3∈R,r4,r5,r6∈R

I[Ri−1
s =r1, R

i
s=r2, R

i+1
s =r3, R

j−1
t =r4, R

j
t=r5, R

j+1
t =r6]

+
∑

s1,...,s5∈S,s6,...,s10∈S

I[Si−2
s =s1, ..., S

i+2
s =s5, S

j−2
t =s6, ..., S

j+2
t =s10]

+
∑

a1,...,a7∈A,a8,...,a14∈A

I[Ai−3
s =a1, ..., A

i+3
s =a7, A

j−3
t =a8, ..., A

j+3
t =a14]

The first sliding window term counts the occurence of substituting a triplet of
residues (r1, r2, r3) in the target with another triplet (r4, r5, r6) in the template.
The other two terms counts the occurence of substitution of two windows of
secondary structures of length 5, and the occurence of substitution of two win-
dows of surface area type of length 7 respectively. To reduce dimensionality of
these features, we bin the residues into 7 groups ({A,G,P,S,T}, {C}, {D,E,N,Q},
{F,W,Y}, {H,K,R}, {I,L,M,V}, {X}, where X stands for missing value and ends
of sequences), and the surface area into 2 values, exposed or buried.

Gap Cost Model All alignment models above share the following gap model.
Consider the cost of opening a gap between position i and i + 1 in the target
sequence s against position j in the template structure t, as depicted by the
following diagram

Target si – – · · · – si+1

Template · · · tj tj+1 · · · tj+k · · ·

We allow the cost of opening a gap to depend on the structural type at position
j in the template structure. It also depends on the structural type of the target
sequence immediately before the gap at position i as well as the structural type
immediately after the gap at position i + 1. Suppose yk is a gap operation that
opens a gap between position i and i + 1 in the target against position j in the
template sequence. The feature vector for this gap operation is:

φGap(yk, s, t) =
∑
r1∈R

G[Rj
t =r1] +

∑
s1∈S,a1∈A

G[Sj
t =s1, A

j
t =a1]

+
∑

s1,s2∈S,a1,a2∈A

G[Si
s =s1, A

i
s =a1, S

i+1
s =s2, A

i+1
s =a2]

G is analogous to I, but we use a different symbol to indicate that it maps to
a different set of dimensions. The first two terms create features for the residue
types and joint features of secondary structure with exposed surface area at tj .
The term G[Si

s = s1, A
i
s = a1, S

i+1
s = s2, A

i+1
s = a2] considers the structure

before and after the gap. For example, G[Si
s = ‘α’, Ai

s = ‘0’, Si+1
s = ‘α’, Ai+1

s =
‘1’] maps to the dimension for the cost of opening a gap between a position in
an alpha-helix of surface type 0 with a consecutive position in the alpha-helix
with surface type 1.

The case of opening a gap in the template involves exactly the same costs,
with the role of target and template reversed.

Results Table 1 shows the Q-scores of the different alignment models trained
with the SVM algorithm using Q-loss. As decribed above, we report the results
for the value of C that optimizes performance on the validation set. The table
also shows the number of features in each model. Note that the training and
the validation set are composed of more difficult cases than the test set, which
explains the generally higher Q-scores on the test set. All performance differences

Table 1. Q-score of the SVM algorithm for different alignment models.

Features Training Validation Test

Simple 1020 26.83 27.79 39.89
Anova2 49634 42.25 35.58 44.98
Tensor 203280 52.36 34.79 42.81
Simple+Anova2 50654 42.29 35.34 44.74
Simple+Anova2+Tensor 253934 47.80 35.79 44.39
Window 447016 51.26 38.09 46.30

Table 2. Comparing training for Q-score with training for Q4-score by test set perfor-
mance.

Anova2 test Q test Q4

train Q 44.98 67.20
train Q4 45.65 69.45

Window test Q test Q4

train Q 46.30 68.33
train Q4 47.65 70.71

on the test set are statistically significant according to the paired Wilcoxon test,
except for the three closely related alignment models Anova2, Simple+Anova2,
and Simple+Anova2+Tensor.

Table 1 shows that the Simple alignment model is too simple to fit the train-
ing data, indicated by the low Q-score on the training set. This alignment model
perform considerably worse than the other alignment models. The more expres-
sive Anova2 model leads to substantial improvement in Q-score over Simple on
both the valiation and test sets, showing that considering pairwise interaction
between structural annotations is meaningful. The Tensor alignment model does
worse than Anova2. There are signs of overfitting in the relatively high Q-score
on the training set. However, the performance on the validation and test sets are
respectable nonetheless. Adding the substitution costs in the alignment models
together, as in Simple+Anova2 and Simple+Anova2+Tensor, does not give us
any gain in accuracy. Their performance on the validation and test sets are very
close to Anova2. Only when we incorporate structural information in the local
neighbourhood, as in the alignment model Window, do we see another jump in
the Q-score on the test set. The Q-score of 46.30 in the Window alignment model
is substantially better than the Q-score of 39.89 of the Simple alignment model
that we started with. To provide a baseline, the Q-score of BLAST is 23.88 on
the test set.

6.2 Is training to different loss functions beneficial?

The SVM method allows the use of different loss functions during training. The
Q-loss used in the previous subsection is rather stringent and does not necessarily
summarize the quality of an alignment well. For example, if all the aligned posi-
tions are shifted by just 1, the Q-loss will jump from 0 to 1, which is roughly the

Table 3. Comparing training for Q-score with training for Q4-score by test set perfor-
mance.

Q on test Q4 on test

SVM (Window, Q4) 47.65 70.71
SSALN 47.06 67.30
BLAST 23.88 28.44
TM-align 69.99 85.32

same Q-loss as that of a completely random alignment. Furthermore, the Q-loss
does not account for the approximate nature of the training alignments, since
there is typically no single exact alignment in sequence to structure alignment
that is clearly correct.

Instead of Q-loss, we now consider the Q4-loss function. Q4-loss counts a
residue as correctly aligned if the shift from its position in the reference alignment
is no more than 4. The Q4-loss function captures our intuition that small shifts
in alignment could be tolerated, and such alignments should be differentiated
from alignments that are completely wrong. We repeat our experiments on two
alignment models from the last section, Anova2 and Window, but this time we
train them with Q4 as the loss function. The results on the test set are shown
in Table 2. For each table entry, we select C on the validation set with respect
to the performance measure that is reported.

Table 2 shows that the models trained on Q4 show better Q4 performance on
the test set. More surprisingly, the models trained on Q4 also show (statistically
significantly) better Q-score on the test set. This gives evidence that Q4 can
indeed effectively account for the inaccuracy of the training alignments, instead
of trying to model the noise. However, in situations where the alignments have
higher sequence similarity or we are more confident of the alignments, the use
of Q-loss or reducing the allowable shift of of 4 in Q4 to lower values could be
beneficial. The flexibility of the SVM regarding the selection of loss function
would cater either of these situations.

6.3 How does the accuracy of SVM models compare to conventional
methods?

As selected by validation performance, the best alignment model is Window
trained on Q4. Table 3 shows the test set performance of various other meth-
ods in comparison. SSALN [3] is one of the best current alignment algorithm
trained using generative methods, and it outperforms alignment and thread-
ing algorithms like CLUSTALW, GenTHREADER, and FUGUE on a variety
of benchmarks. It incorporates structural information in its substitution matri-
ces, and contains a hand-tuned gap model. SSALN was trained on exactly the
same training set and same set of structural annotations as our SVM model,
so a direct comparison is particularly meaningful. The SVM model substantially

outperforms SSALN with respect to Q4-score, and is slightly better than SSALN
on Q-score. The performance of BLAST is included to provide a baseline. The
performance of the structural alignment program TM-align [23] is reported here
to show its agreement with the CE alignments, and demonstrates the rather high
inherent noise in the data.

7 Discussions and Conclusions

This paper explore an SVM method for learning complex alignment models for
sequence to structure alignment. We show that the algorithm can learn high-
dimensional models that include many features beyond residue identity while
effectively controlling overfitting. Unlike generative methods, it does not require
independence assumptions between features. The SVM method provides great
modeling flexibility to biologists, allowing the estimation of models that include
all available information without having to worrying about statistical dependen-
cies between features. Furthermore, we show that one can incorporate different
loss functions during training, which provides the flexibility to specify the costs
of different alignment errors. The empirical results show that the SVM algorithm
outperforms one of the best current generative models, and is practical to train
on large datasets.

8 Acknowledgments

We thank Jian Qiu for his detailed answers on our many questions on SSALN,
Tamara Galor-Neah for her help with the LOOPP program, and Phil Zigoris for
his work on an early prototype of the SVM software. This work is supported by
NIH Grants IS10RR020889 and GM67823, and by the NSF Award IIS-0412894.

References

1. Joachims, T.: Learning to align sequences: A maximum-margin approach.
http://www.joachims.org (August 2003)

2. Joachims, T., Galor, T., Elber, R.: Learning to align sequences: A maximum-
margin approach. In et al., B.L., ed.: New Algorithms for Macromolecular Simu-
lation. Volume 49 of LNCS. Springer (2005) 57–68

3. Qiu, J., Elber, R.: SSALN: an alignment algorithm using structure-dependent
substitution matrices and gap penalties learned from structurally aligned protein
pairs. Proteins 62 (2006) 881–91

4. Bucher, P., Hofmann, K.: A sequence similarity search algorithm based on a proba-
bilistic interpretation of an alignment scoring system. In: International Conference
on Intelligent Systems for Molecular Biology (ISMB). (1996)

5. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological Sequence Analysis.
Cambridge University Press (1998)

6. Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks.
Proceedings of the National Academy of Sciences 89 (1992) 10915–10919

7. Dayhoff, M.O., Schwartz, R.M., Orcutt, B.C.: A model of evolutionary change in
proteins. Atlas of Protein Sequence and Structure 5 (1978) 345–352

8. Ristad, S.E., Yianilos, P.N.: Learning string edit distance. IEEE Transactions on
Pattern Recognition and Machine Intelligence Vol. 20(5) (1998) 522–532

9. Joachims, T.: Text categorization with support vector machines: Learning with
many relevant features. In: Proceedings of the European Conference on Machine
Learning, Berlin, Springer (1998) 137 – 142

10. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods
for structured and interdependent output variables. Journal of Machine Learning
Research (JMLR) 6 (September 2005) 1453 – 1484

11. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In: International Conference
on Machine Learning (ICML). (2001)

12. Gusfield, D., Stelling, P.: Parametric and inverse-parametric sequence alignment
with XPARAL. Methods in Enzymology 266 (1996) 481–494

13. Pachter, L., Sturmfelds, B.: Parametric inference for biological sequence analysis.
In: Proceedings of the National Academy of Sciences. Volume 101. (2004) 16138–
16143

14. Sun, F., Fernandez-Baca, D., Yu, W.: Inverse parametric sequence alignment. In:
International Computing and Combinatorics Conference (COCOON). (2002)

15. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector ma-
chine learning for interdependent and structured output spaces. In: International
Conference on Machine Learning (ICML). (2004)

16. Do, C.B., Gross, S.S., Batzoglou, S.: CONTRAlign: Discriminative training for
protein sequence alignment. In: International Conference in Research on Compu-
tational Molecular Biology (RECOMB). (2006)

17. McCallum, A., Bellare, K., Pereira, F.: A conditional random field for
discriminatively-trained finite-state string edit distance. In: Conference on Un-
certainty in Artificial Intelligence. (2005)

18. Kececioglu, J.D., Kim, E.: Simple and fast inverse alignment. In Apostolico, A.,
Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M.S., eds.: Annual International
Conference on Research in Computational Molecular Biology (RECOMB). Volume
3909 of Lecture Notes in Computer Science., Springer (2006) 441–455

19. Smith, T., Waterman, M.: Identification of common molecular subsequences. Jour-
nal of Molecular Biology 147 (1981) 195–197

20. Vapnik, V.: Statistical Learning Theory. Wiley, Chichester, GB (1998)
21. Taskar, B., Guestrin, C., Koller, D.: Maximum-margin markov networks. In: Neural

Information Processing Systems (NIPS). (2003)
22. Shindyalov, I.N., Bourne, P.E.: Protein structure alignment by incremental com-

binatorial extension(CE) of the optimal path. Protein Eng 11 (1998) 739–747
23. Zhang, Y., Skolnick, J.: TM-align: A protein structure alignment algorithm based

on TM-score. Nucleic Acids Research 33 (2005) 2302–2309
24. Adamczak, R., Porollo, A., Meller, J.: Accurate prediction of solvent accessibility

using neural networks-based regression. Proteins 56 (2004) 753–67
25. Kabsch, W., Sander, C.: Dictionary of protein secondary structure: pattern recogni-

tion of hydrogen bond and geometrical features. Biopolymers 22 (1983) 2577–2637

