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Abstract

We present a large-margin formulation and
algorithm for structured output prediction
that allows the use of latent variables. Our
proposal covers a large range of applica-
tion problems, with an optimization problem
that can be solved efficiently using Concave-
Convex Programming. The generality and
performance of the approach is demonstrated
through three applications including motif-
finding, noun-phrase coreference resolution,
and optimizing precision at k in information
retrieval.

1. Introduction

In many structured prediction tasks, there is useful
modeling information that is not available as part of
the training data (x1, y1), ..., (xn, yn). In noun phrase
coreference resolution, for example, one is typically
given the clustering y of noun-phrases for a training
document x, but not the set of informative links that
connects the noun phrases together into clusters. Sim-
ilarly, in machine translation, one may be given the
translation y of sentence x, but not the linguistic struc-
ture h (e.g. parse trees, word alignments) that con-
nects them. This missing information h, even if not
observable, is crucial for expressing high-fidelity mod-
els for these tasks. It is important to include these
information in the model as latent variables.

Latent variables have long been used to model observa-
tions in generative probabilistic models such as Hidden
Markov Models. In discriminative models, however,
the use of latent variables is much less explored. Re-
cently, there has been some work on Conditional Ran-
dom Fields (Wang et al., 2006) with latent variables.
Even less explored is the use of latent variables in
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large-margin structured output learning such as Max-
Margin Markov Networks or Structural SVMs (Taskar
et al., 2003; Tsochantaridis et al., 2004). While these
non-probabilistic models offer excellent performance
on many structured prediction tasks in the fully ob-
served case, they currently do not support the use of
latent variables, which excludes many interesting ap-
plications.

In this paper, we propose an extension of the Struc-
tural SVM framework to include latent variables. We
identify a particular, yet rather general, formulation
for which there exists an efficient algorithm to find a
local optimum using the Concave-Convex Procedure.
The resulting algorithm is similarly modular as the
Structural SVM algorithms for the fully observed case.
To illustrate the generality of our Latent Structural
SVM algorithm, we provide experimental results on
three different applications in computational biology,
natural language processing, and information retrieval.

1.1. Related Works

Many of the early works in introducing latent vari-
ables into discriminative models were motivated by
computer vision applications, where it is natural to use
latent variables to model human body parts or parts of
objects in detection tasks. The work in (Wang et al.,
2006) introduces Hidden Conditional Random Fields,
a discriminative probabilistic latent variable model for
structured prediction, with applications to two com-
puter vision tasks. In natural language processing
there is also work in applying discriminative proba-
bilistic latent variable models, for example the training
of PCFG with latent annotations in a discriminative
manner (Petrov & Klein, 2007). The non-convex likeli-
hood functions of these problems are usually optimized
using gradient-based methods.

The Concave-Convex Procedure (Yuille & Rangara-
jan, 2003) employed in our work is a general frame-
work for minimizing non-convex functions which falls
into the class of DC (Difference of Convex) program-
ming. In recent years there have been numerous appli-
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cations of the algorithm in machine learning, includ-
ing training non-convex SVMs and transductive SVMs
(Collobert et al., 2006). The approach in (Smola et al.,
2005) employs CCCP to handle missing data in SVMs
and Gaussian Processes and is closely related to our
work. However our approach is non-probabilistic and
avoids the computation of partition functions, which is
particularly attractive for structured prediction. Very
recently the CCCP algorithm has also been applied to
obtain tighter non-convex loss bounds on structured
learning (Chapelle et al., 2008).

In the computer vision community there are recent
works on training Hidden CRF using the max-margin
criterion (Felzenszwalb et al., 2008; Wang & Mori,
2008). In these works they focus on classification prob-
lems only and their training problem formulations are
a special case of our proposal below. Interestingly, the
algorithm in (Felzenszwalb et al., 2008) coincides with
our approach for binary classification but was derived
in a different way.

2. Structural SVMs

Suppose we are given a training set of input-output
structure pairs S={(x1, y1), . . . , (xn, yn)}∈(X × Y)n.
We want to learn a linear prediction rule of the form

fw(x) = argmaxy∈Y [w · Φ(x, y)] , (1)

where Φ is a joint feature vector that describes the
relationship between input x and structured output y,
with w being the parameter vector. The optimization
problem of computing this argmax is typically referred
to as the “inference” or “prediction” problem.

When training Structural SVMs, the parameter vec-
tor w is determined by minimizing the (regularized)
risk on the training set (x1, y1), ..., (xn, yn). Risk is
measured through a user-supplied loss function ∆(y, ŷ)
that quantifies how much the prediction ŷ differs from
the correct output y. Note that ∆ is typically non-
convex and discontinuous and there are usually ex-
ponentially many possible structures ŷ in the output
space Y. The Structural SVM formulation (Tsochan-
taridis et al., 2004) overcomes these difficulties by re-
placing the loss function ∆ with a piecewise linear con-
vex upper bound (margin rescaling)

∆(yi, ŷi(w)) ≤ max
ŷ∈Y

[∆(yi, ŷ)+w·Φ(xi, ŷ)]−w·Φ(xi, yi)

where ŷi(w) = argmaxy∈Y w · Φ(xi, y).

To train Structural SVMs we then solve the following
convex optimization problem:

min
w

1

2
‖w‖2+C

n
∑

i=1

[

max
ŷ∈Y

[∆(yi, ŷ)+w·Φ(xi, ŷ)]−w·Φ(xi, yi)

]

.

Despite the typically exponential size of Y, this op-
timization problem can be solved efficiently using
cutting-plane or stochastic gradient methods. Struc-
tural SVMs give excellent performance on many struc-
tured prediction tasks, especially when the model Φ
is high-dimensional and it is necessary to optimize to
non-standard loss functions ∆.

3. Structural SVM with Latent

Variables

As argued in the introduction, however, in many appli-
cations the input-output relationship is not completely
characterized by (x, y) ∈ X × Y pairs in the training
set alone, but also depends on a set of unobserved la-
tent variables h ∈ H. To generalize the Structural
SVM formulation, we extend our joint feature vector
Φ(x, y) with an extra argument h to Φ(x, y, h) to de-
scribe the relation among input x, output y, and latent
variable h. We want to learn a prediction rule of the
form

fw(x) = argmax(y,h)∈Y×H [w · Φ(x, y, h)] . (2)

At first glance, a natural way to extend the loss func-
tion ∆ is to again include the latent variables h ∈ H
similar to above, to give

∆((yi, h
∗
i (w)), (ŷi(w), ĥi(w))),

where h∗
i (w) = argmaxh∈H w · Φ(xi, yi, h) and

(ŷi(w), ĥi(w)) = argmax(y,h)∈Y×H w · Φ(xi, y, h).

Essentially, this extended loss measures the difference
between the pair (ŷi(w), ĥi(w)) given by the predic-
tion rule and the best latent variable h∗

i (w) that ex-
plains the input-output pair (xi, yi) in the training set.
Like in the fully observed case, we can derive a hinge-
loss style upper bound

∆((yi, h
∗
i (w)), (ŷi(w), ĥi(w)))

≤ ∆((yi, h
∗
i (w)), (ŷi(w), ĥi(w)))

− [w · Φ(xi, yi, h
∗
i (w)) − w · Φ(xi, ŷi(w), ĥi(w))]

=

(

max
(ŷ,ĥ)∈Y×H

w·Φ(xi, ŷ, ĥ)

)

+∆((yi, h
∗
i (w)), (ŷi(w), ĥi(w)))

−

(

max
h∈H

w · Φ(xi, yi, h)

)

. (3)

In the case of Structural SVMs without latent vari-
ables, the complex dependence on w within the loss ∆
can be removed using the following inequality, com-
monly referred to as “loss-augmented inference” in
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Structural SVM training:
(

max
ŷ∈Y

w · Φ(x, ŷ)

)

+ ∆(yi, ŷi(w))

≤ max
ŷ∈Y

[w · Φ(xi, ŷi) + ∆(yi, ŷ)].
(4)

When latent variables are included, however, the de-
pendence of ∆ on the latent variables h∗

i (w) of the
correct label yi prevents us from applying this trick.

To circumvent this difficulty, let us rethink the defini-
tion of loss function from Equation (3). As we will see
below, many real world applications do not require the
loss functions to depend on the offending h∗

i (w). In ap-
plications such as parsing and object recognition, the
latent variables serve as indicator for mixture compo-
nents or intermediate representations and are not part
of the output. As a result, the natural loss functions
that we are interested in for these tasks usually do not
depend on the latent variables.

We therefore focus on the case where the loss function
∆ does not depend on the latent variable h∗

i (w):

∆((yi, h
∗
i (w)), (ŷi(w), ĥi(w))) = ∆(yi, ŷi(w), ĥi(w)).

Note that however the loss function may still depend
on ĥi(w). In the case where the latent variable ĥ is a
part of the prediction which we care about we can still
define useful asymmetric loss functions ∆(y, ŷ, ĥ) for
learning. The applications of noun phrase coreference
resolution and optimizing for precision@k in document
retrieval in the experiments section below are good
examples of this.

With the redefined loss ∆(yi, ŷi(w), ĥi(w)), the bound
in Equation (3) becomes

∆((yi, h
∗
i (w)), (ŷi(w), ĥi(w)))

≤

(

max
(ŷ,ĥ)∈Y×H

[w·Φ(xi, ŷ, ĥ)+∆(yi, ŷ, ĥ)]

)

−

(

max
h∈H

w·Φ(xi, yi, h)

)

.

Using the same reasoning as for fully observed Struc-
tural SVMs, this gives rise to the following optimiza-
tion problem for Structural SVMs with latent vari-
ables:

min
w

1

2
‖w‖2+C

n
∑

i=1

(

max
(ŷ,ĥ)∈Y×H

[w·Φ(xi, ŷ, ĥ)+∆(yi, ŷ, ĥ)]

)

− C

n
∑

i=1

(

max
h∈H

w · Φ(xi, yi, h)

)

. (5)

It is easy to observe that the above formulation reduces
to the usual Structural SVM formulation in the ab-
sence of latent variables. The formulation can also be

easily extended to include kernels, although the usual
extra cost of computing inner products in nonlinear
kernel feature space applies.

Finally, note that the redefined loss distinguishes our
approach from transductive structured output learn-
ing (Zien et al., 2007). When the loss ∆ depends only
on the fully observed label yi, it rules out the possi-
bility of transductive learning, but the restriction also
results in simpler optimization problems compared to
the transductive cases (for example, the approach in
(Zien et al., 2007) involves constraint removals to deal
with dependence on h∗

i (w) within the loss ∆).

4. Solving the Optimization Problem

A key property of Equation (5) that follows from the

redefined loss ∆(yi, ŷi(w), ĥi(w)) is that it can be writ-
ten as the difference of two convex functions:

min
w

[

1

2
‖w‖2+C

n
∑

i=1

max
(ŷ,ĥ)∈Y×H

[w·Φ(xi, ŷ, ĥ)+∆(yi, ŷ, ĥ)]

]

−

[

C
n
∑

i=1

max
h∈H

w · Φ(xi, yi, h)

]

.

This allows us to solve the optimization problem us-
ing the Concave-Convex Procedure (CCCP) (Yuille &
Rangarajan, 2003). The general template for a CCCP
algorithm for minimizing a function f(w) − g(w),
where f and g are convex, works as follows:

Algorithm 1 Concave-Convex Procedure (CCCP)

1: Set t = 0 and initialize w0

2: repeat

3: Find hyperplane vt such that −g(w) ≤
−g(wt) + (w − wt) · vt for all w

4: Solve wt+1 = argmin
w

f(w) + w · vt

5: Set t = t + 1
6: until [f(wt) − g(wt)] − [f(wt−1) − g(wt−1)] < ε

The CCCP algorithm is guaranteed to decrease the
objective function at every iteration and to converge
to a local minimum or saddle point (Yuille & Rangara-
jan, 2003). Line 3 constructs a hyperplane that upper
bounds the concave part of the objective −g, so that
the optimization problem solved at line 4 is convex.

In terms of the optimization problem for Latent Struc-
tural SVM, the step of computing the upper bound for
the concave part in line 3 involves computing

h∗
i = argmaxh∈H wt · Φ(xi, yi, h) (6)

for each i. We call this the “latent variable comple-
tion” problem. The hyperplane constructed is vt =
∑n

i=1 Φ(xi, yi, h
∗
i ).
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Computing the new iterate wt+1 in line 1 involves solv-
ing the standard Structural SVM optimization prob-
lem by completing yi with the latent variables h∗

i as if
they were completely observed:

min
w

1

2
‖w‖2+C

n
∑

i=1

max
(ŷ,ĥ)∈Y×H

[w · Φ(xi, ŷ, ĥ)+∆(yi, ŷ, ĥ)]

− C
∑n

i=1
w · Φ(xi, yi, h

∗
i ). (7)

Thus the CCCP algorithm applied to Structural SVM
with latent variables gives rise to a very intuitive
algorithm that alternates between imputing the la-
tent variables h∗

i that best explain the training pair
(xi, yi) and solving the Structural SVM optimization
problem while treating the latent variables as com-
pletely observed. This is similar to the iterative pro-
cess of Expectation Maximization (EM). But unlike
EM which maximizes the expected log likelihood un-
der the marginal distribution of the latent variables,
we are minimizing the regularized loss against a single
latent variable h∗

i that best explains (xi, yi).

In our implementation, we used an improved version of
the cutting plane algorithm called the proximal bundle
method (Kiwiel, 1990) to solve the standard Structural
SVM problem in Equation (7). In our experience the
proximal bundle method usually converges using fewer
iterations than the cutting plane algorithm (Joachims
et al., To appear) in the experiments below. The al-
gorithm also fits very nicely into the CCCP algorith-
mic framework when it is employed to solve the stan-
dard Structural SVM optimization problem inside the
CCCP loop. The solution wt−1 from the last iteration
can be used as a starting point in a new CCCP iter-
ation, without having to reconstruct all the cuts from
scratch. We will provide some computational experi-
ence at the end of the experiments section.

5. Experiments

Below we demonstrate three applications of our La-
tent Structural SVM algorithm. Some of them have
been discussed in the machine learning literature be-
fore, but we will show that our Latent Structural
SVM framework provides new and straightforward so-
lution approaches with good predictive performance.
A software package implementing the Latent Struc-
tural SVM algorithm is available for download at
http://www.cs.cornell.edu/∼cnyu/latentssvm/.

5.1. Discriminative Motif Finding

Our development of the Latent Structural SVM was
motivated by a motif finding problem in yeast DNA
through collaboration with computational biologists.

Motifs are repeated patterns in DNA sequences that
are believed to have biological significance. Our
dataset consists of ARSs (autonomously replicating se-
quences) screened in two yeast species S. kluyveri and
S. cerevisiae. Our task is to predict whether a par-
ticular sequence is functional (i.e., whether they start
the replication process) in S. cerevisiae and to find
out the motif responsible. All the native ARSs in S.
cerevisiae are labeled as positive, since by definition
they are functional. The ones that showed ARS ac-
tivity in S. kluyveri were then further tested to see
whether they contain functional ARS in S. cerevisiae,
since they might have lost their function due to se-
quence divergence of the two species during evolution.
They are labeled as positive if functional and negative
otherwise. In this problem the latent variable h is the
position of the motif in the positive sequences, since
current experimental procedures do not have enough
resolution to pinpoint their locations. Altogether we
have 124 positive examples and 75 negative examples.
In addition we have 6460 sequences from the yeast in-
tergenic regions for background model estimation.

Popular methods for motif finding includes methods
based on EM (Bailey & Elkan, 1995) and Gibbs-
sampling. For this particular yeast dataset we believe
a discriminative approach, especially one incorporat-
ing large-margin separation, is beneficial because of
the close relationship and DNA sequence similarity
among the different yeast species in the dataset.

Let xi denote the ith base (A, C, G, or T) in our
input sequence x of length n. We use the common
position-specific weight matrix plus background model
approach in our definition of feature vector:

Ψ(x, y, h)=























l
∑

j=1

φ
(j)
PSM(xh+j)+

h
∑

i=1

φBG(xi)+
n
∑

i=h+l+1

φBG(xi)

[if y = +1]
n
∑

i=1

φBG(xi) [if y = −1],

where φ
(j)
PSM is the feature count for the jth position

of the motif in the position-specific weight matrix, and
φBG is the feature count for the background model (we
use a Markov background model of order 3).

For the positive sequences, we randomly initialized the
motif position h uniformly over the whole length of
the sequence. We optimized over the zero-one loss ∆
for classification and performed a 10-fold cross vali-
dation. We make use of the set of 6460 intergenic
sequences in training by treating them as negative ex-
amples (but they are excluded in the test sets). Instead
of penalizing their slack variables by C in the objec-
tive we only penalize these examples by C/50 to avoid
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Table 1. Classification Error on Yeast DNA (10-fold CV)

Error rate

Gibbs sampler (l = 11) 32.49%
Gibbs sampler (l = 17) 31.47%
Latent Structural SVM (l = 11) 11.09%
Latent Structural SVM (l = 17) 12.00%

overwhelming the training set with negative examples
(with the factor 1/50 picked by cross-validation). We
trained models using regularization constant C from
{0.1, 1, 10, 100, 1000} times the size of the training set
(5992 for each fold), and each model is re-trained 10
times using 10 different random seeds.

As control we ran a Gibbs sampler (Ng & Keich, 2008)
on the same dataset, with the same set of intergenic
sequences for background model estimation. It reports
good signals on motif lengths l = 11 and l = 17,
which we compare our algorithm against. To provide a
stronger baseline we optimize the classification thresh-
old of the Gibbs sampler on the test set and report
the best accuracy over all possible thresholds. Table
1 compares the accuracies of the Gibbs sampler and
our method averaged across 10 folds. Our algorithm
shows a significant improvement over the Gibbs sam-
pler (with p-value < 10−4 in a paired t-test). As for
the issue of local minima, the standard deviations on
the classification error over the 10 random seeds, av-
eraged over 10 folds, are 0.0648 for l = 11 and 0.0546
for l = 17. There are variations in solution quality
due to local minima in the objective, but they are rel-
atively mild in this task and can be overcome with a
few random restarts.

In this application the Latent Structural SVM allows
us to exploit discriminative information to better de-
tect motif signals compared to traditional unsuper-
vised probabilistic model for motif finding. Currently
we are working with our collaborators on ways to inter-
pret the position-specific weight matrix encoded in the
weight vector trained by the Latent Structural SVM.

5.2. Noun Phrase Coreference via Clustering

In noun phrase coreference resolution we would like
to determine which noun phrases in a text refer to
the same real-world entity. In (Finley & Joachims,
2005) the task is formulated as a correlation clustering
problem trained with Structural SVMs. In correlation
clustering the objective function maximizes the sum
of pairwise similarities. However this might not be
the most appropriate objective, because in a cluster of
coreferent noun phrases of size k, many of the O(k2)
links contain only very weak signals. For example, it is

Figure 1. The circles are the clusters defined by the label
y. The set of solid edges is one spanning forest h that
is consistent with y. The dotted edges are examples of
incorrect links that will be penalized by the loss function.

difficult to determine whether a mention of the name
‘Tom’ at the beginning of a text and a pronoun ‘he’
at the end of the text are coreferent directly without
scanning through the whole text.

Following the intuition that humans might determine
if two noun phrases are coreferent by reasoning tran-
sitively over strong coreference links (Ng & Cardie,
2002), we model the problem of noun phrase corefer-
ence as a single-link agglomerative clustering problem.
Each input x contains all n noun phrases in a docu-
ment, and all the pairwise features xij between the
ith and jth noun phrases. The label y is a partition
of the n noun phrases into coreferent clusters. The
latent variable h is a spanning forest of ‘strong’ coref-
erence links that is consistent with the clustering y. A
spanning forest h is consistent with a clustering y if
every cluster in y is a connected component in h (i.e.,
a tree), and there are no edges in h that connects two
distinct clusters in y (Figure 1).

To score a clustering y with a latent spanning forest
h, we use a linear scoring model that adds up all the
edge scores for edges in h, parameterized by w:

w · Φ(x, y, h) =
∑

(i,j)∈h

w · xij .

To predict a clustering y from an input x (argmax
in Equation (2)), we can run any Maximum Span-
ning Tree algorithm such as Kruskal’s algorithm on
the complete graph of n noun phrases in x, with edge
weights defined by w ·xij . The output h is a spanning
forest instead of a spanning tree because two trees will
remain disconnected if all edges connecting the two
trees have negative weights. We then output the clus-
tering defined by the forest h as our prediction y.

For the loss function ∆, we would like to pick one that
supports efficient computation in the loss-augmented
inference, while at the same time penalizing incorrect
spanning trees appropriately for our application. We
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Table 2. Clustering Accuracy on MUC6 Data

MITRE Loss Pair Loss

SVM-cluster 41.3 2.89
Latent Structural SVM 44.1 2.66
Latent Structural SVM
(modified loss, r = 0.01) 35.6 4.11

propose the loss function

∆(y, ŷ, ĥ) = n(y) − k(y) −
∑

(i,j)∈ĥ

l(y, (i, j)), (8)

where n(y) and k(y) are the number of vertices and
the number of clusters in the correct clustering y. The
function l(y, (i, j)) returns 1 if i and j are within the
same cluster in y, and -1 otherwise. It is easy to see
that this loss function is non-negative and zero if and
only if the spanning forest ĥ defines the same clustering
as y. Since this loss function is linearly decomposable
into the edges in ĥ, the loss-augmented inference can
also be computed efficiently using Kruskal’s algorithm.
Similarly the step of completing the latent variable
h given a clustering y, which involves computing a
highest scoring spanning forest that is consistent with
y, can also be done with the same algorithm.

To evaluate our algorithm, we performed experiments
on the MUC6 noun phrase coreference dataset. There
are 60 documents in the dataset and we use the first
30 for training and the remaining 30 for testing. The
pairwise features xij are the same as those in (Ng
& Cardie, 2002). The regularization parameter C is
picked from 10−2 to 106 using a 10-fold cross valida-
tion procedure. The spanning forest h for each correct
clustering y is initialized by connecting all coreferent
noun phrases in chronological order (the order in which
they appear in the document), so that initially each
tree in the spanning forest is a linear chain.

Table 2 shows the result of our algorithm compared
to the SVM correlation clustering approach in (Finley
& Joachims, 2005). We present the results using the
same loss functions as in (Finley & Joachims, 2005).
Pair loss is the proportion of all O(n2) edges incor-
rectly classified. MITRE loss is a loss proposed for
evaluating noun phrase coreference that is related to
the F1-score (Vilain et al., 1995).

We can see from the first two lines in the table that our
method performs well on the Pair loss but worse on the
MITRE loss when compared with the SVM correlation
clustering approach. Error analysis reveals that our
method trained with the loss defined by Equation (8) is
very conservative when predicting links between noun
phrases, having high precision but rather low recall.

Therefore we adapt our loss function to make it more
suitable for minimizing the MITRE loss. We modified
the loss function in Equation (8) to penalize less for
adding edges that incorrectly link two distinct clusters,
using a penalty r < 1 instead of 1 for each incorrect
edge added. With the modified loss (with r = 0.01
picked via cross-validation) our method performs much
better than the SVM correlation clustering approach
on the MITRE loss (p-value < 0.03 in a Z-test).

Unlike the SVM correlation clustering approach, where
approximate inference is required, our inference proce-
dure involves only simple and efficient maximum span-
ning tree calculations. For this noun phrase corefer-
ence task, the new formulation with Latent Structural
SVM improves both the prediction performance and
training efficiency over conventional Structural SVMs.

5.3. Optimizing for Precision@k in Ranking

Our last example application is related to optimizing
for precision@k in document retrieval. Precision@k
is defined to be the number of relevant documents in
the top k positions given by a ranking, divided by k.
For each example in the training set, the pattern x
is a collection of n documents {x1, . . . ,xn} associated
with a query q, and the label y ∈ {−1, 1}n classifies
whether each document in the collection is relevant to
the query or not. However for the purpose of evalu-
ating and optimizing for information retrieval perfor-
mance measures such as precision@k and NDCG@k,
the partial order of the documents given by the label
y is insufficient. The label y does not tell us which the
top k documents are. To deal with this problem, we
can postulate the existence of a latent total order h on
all documents related to the query, with h consistent
with the partial order given by label y. To be precise,
let hj be the index of the jth most relevant document,
such that xhj

≥tot xhj+1
for j from 1 to n − 1, where

≥tot is a total order of relevance on the documents
xi, and let >tot be its strict version. The label y is
consistent with the latent variable h if yi > yj implies
xi >tot xj , so that all relevant documents in y comes
before the non-relevant documents in the total order
h. For optimizing for precision@k in this section, we
can restrict h to be first k documents h1, . . . , hk.

We use the following construction for the feature vec-
tor (in a linear feature space):

Φ(x, y, h) =
1

k

∑k

j=1
xhj

.

The feature vector only consists of contributions from
the top k documents selected by h, when all other doc-
uments in the label y are ignored (with the restriction
that h has to be consistent with y).
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w

Figure 2. Latent Structural SVM tries to optimize for ac-
curacy near the region for the top k documents (circled),
when a good general ranking direction w is given

For the loss we use the following precision@k loss:

∆(y, ŷ, ĥ) = min{1,
n(y)

k
} −

1

k

k
∑

j=1

[yhj
== 1].

This loss function is essentially one minus precision@k,
with slight modifications when there are less than k
relevant documents in a collection. We replace 1 by
n(y)/k so that the loss can be minimized to zero, where
n(y) is the total number of relevant documents in y.

Intuitively, with this particular design of the feature
vector and the loss function, the algorithm is trying to
optimize for the classification accuracy in the region
near the top k documents, while ignoring most of the
documents in the rest of the feature space (Figure 2).

All the inference problems required for this application
are efficient to solve. Prediction requires sorting based
on the score w ·xj in decreasing order and picking the
top k. The loss-augmented inference requires sorting
based on the score w ·xj − [yj == 1] and picking the

top k for ĥ. Latent variable completion for y requires
a similar sorting procedure on w · xj and picking the
top k, but during sorting the partial order given by the
label y has to be respected (so that xi comes before xj

when either yi > yj , or yi ==yj and w · xi >w · xj).

To evaluate our algorithm, we ran experiments on
the OHSUMED tasks of the LETOR 3.0 dataset (Liu
et al., 2007). We use the per-query-normalized version
of the features in all our training and testing below,
and employ exactly the same training, test, and vali-
dation sets split as given.

For this application it is vital to have a good initial-
ization of the latent varibles h. Simple initialization
strategies such as randomly picking k relevant docu-
ments indicated by the label y does not work for these
datasets with noisy relevance judgements, which usu-
ally give the trivial zero vector as solution. Instead
we adopt the following initialization strategy. Using
the same training and validation sets in each fold, we
trained a model optimizing for weighted average clas-

Table 3. Precision@k on OHSUMED dataset (5-fold CV)

OHSUMED P@1 P@3 P@5 P@10

Ranking SVM 0.597 0.543 0.532 0.486
ListNet 0.652 0.602 0.550 0.498
Latent Structural SVM 0.680 0.573 0.567 0.494
Initial Weight Vector 0.626 0.557 0.524 0.464
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Figure 3. Number of CCCP iterations against C

sification accuracy (weighted by the reciprocal of the
number of documents associated by each query). Then
for each fold the trained model is used as the initial
weight vector to optimize for precision@k.

We can see from Table 3 that our Latent Struc-
tural SVM approach performs better than the Ranking
SVM (Herbrich et al., 2000; Joachims, 2002) on pre-
cision@1,3,5,10, one of the stronger baselines in the
LETOR 3.0 benchmark. We also essentially tie with
ListNet (Cao et al., 2007), one of the best overall rank-
ing method in the LETOR 3.0 benchmark. As a san-
ity check, we also report the performance of the initial
weight vectors used for initializing the CCCP. The La-
tent Structural SVM consistently improves upon these,
showing that the good performance is not simply a re-
sult of good initialization.

5.4. Efficiency of the Optimization Algorithm

Figure 3 shows the number of iterations required for
convergence for the three tasks for different values of
the parameter C, averaged across all folds in their re-
spective cross validation procedures. We fix the pre-
cision ε at 0.001 for the motif finding and optimizing
for precision@k tasks, and use ε = 0.05 for the noun
phrase coreference task due to a different scaling of the
loss function. We can see that in general the number of
CCCP iterations required only grows very mildly with
C, and most runs finish within 50 iterations. As the
cost of each CCCP iteration is no more than solving a
standard Structural SVM optimization problem (with
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the completion of latent variables), the total number
of CCCP iterations gives us a rough estimate of the
cost of training Latent Structural SVMs, which is not
particularly expensive. In practice the cost is even
lower because we do not need to solve the optimiza-
tion problem to high precision in the early iterations,
and we can also reuse solution from the previous iter-
ation for warm start in a new CCCP iteration.

6. Conclusions

We have presented a framework and formulation for
learning Structural SVMs with latent variables. We
identify a particular case that covers a wide range of
application problems, yet affords an efficient training
algorithms using Convex-Concave Programming. The
algorithm is modular and easily adapted to new appli-
cations. We demonstrated the generality of the Latent
Structural SVM with three applications, and a future
research direction will be to explore further applica-
tions of this algorithm in different domains.
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